留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型低电感磁绝缘传输线的冷腔特性

刘燕 刘腊群 周良骥 蒋吉昊 刘大刚 王辉辉 王启昂

刘燕, 刘腊群, 周良骥, 等. 一种新型低电感磁绝缘传输线的冷腔特性[J]. 强激光与粒子束, 2022, 34: 063005. doi: 10.11884/HPLPB202234.210494
引用本文: 刘燕, 刘腊群, 周良骥, 等. 一种新型低电感磁绝缘传输线的冷腔特性[J]. 强激光与粒子束, 2022, 34: 063005. doi: 10.11884/HPLPB202234.210494
Liu Yan, Liu Laqun, Zhou Liangji, et al. Cold cavity characteristics of a new type of low-inductance magnetically insulated transmission line[J]. High Power Laser and Particle Beams, 2022, 34: 063005. doi: 10.11884/HPLPB202234.210494
Citation: Liu Yan, Liu Laqun, Zhou Liangji, et al. Cold cavity characteristics of a new type of low-inductance magnetically insulated transmission line[J]. High Power Laser and Particle Beams, 2022, 34: 063005. doi: 10.11884/HPLPB202234.210494

一种新型低电感磁绝缘传输线的冷腔特性

doi: 10.11884/HPLPB202234.210494
基金项目: 国家自然科学基金项目(12075051,11775045,11905026)
详细信息
    作者简介:

    刘 燕,15803808946@163.com

    通讯作者:

    刘腊群,liulq@uestc.edu.cn

  • 中图分类号: TM89

Cold cavity characteristics of a new type of low-inductance magnetically insulated transmission line

  • 摘要: 研究了一种新型低电感花瓣形磁绝缘传输线的冷腔特性。该传输线构型的横向剖面的真空部分由12个类似花瓣形状的周期组成,而每个周期又由平行板和同轴圆弧两种基本传输线构型组成。该构型的整体轮廓有效增加了电极面积,使得传输线的电感大大降低,从而实现使用单层磁绝缘传输线即可获得较低的阻抗,规避了多层汇流结构带来的复杂的PHC结构和磁零位区损失问题。首先,分别计算出两种基本构型单元的电磁场分布、电感、电容和阻抗;而后,再整体计算分析出花瓣形磁绝缘传输线的电磁特性参数;同时,还通过数值模拟来分析该传输线的冷腔特性,获得了该传输线的阻抗值及电磁场分布,并将数值模拟结果与理论计算值进行了对比分析,结果验证了理论计算方法的正确性。
  • 图  1  新型低电感MITL横截面构型

    Figure  1.  New low-inductance MITL cross-sectional configuration

    图  2  单个花瓣周期结构图

    Figure  2.  Periodic structure diagram of a single petal

    图  3  半个花瓣周期三维模型剖面图

    Figure  3.  Half-petal cycle 3D model section view

    图  4  花瓣形不同观测点处电场分布的模拟和理论值

    Figure  4.  Simulation and theoretical value of electric field distribution at different observation points of petal-shaped

    图  5  花瓣形不同观测点处磁场分布的模拟和理论值

    Figure  5.  Simulation and theoretical values of magnetic field distribution at different observation points of petal-shaped

    图  6  花瓣形电场等位图

    Figure  6.  Isometric map of petal-shaped electric field

    图  7  花瓣形磁场等位图

    Figure  7.  Isometric map of petal-shaped magnetic field

    图  8  花瓣形阴极到阳极的电场空间变化图

    Figure  8.  Spatial variation of electric field from petal-shaped cathode to anode

    图  9  花瓣形阴极到阳极的磁场空间变化图

    Figure  9.  Spatial variation of the magnetic field from petal-shaped cathode to the anode

    表  1  理论计算与Chipic模拟的点的电场分布对比

    Table  1.   Comparison of electric field distribution between theoretical calculation and Chipic simulation point

    point theoretical calculation/(MV·m−1)chipic simulation/(MV·m−1)relative error/%
    small circle segmentP1497.2499.00.3
    P2497.2500.40.6
    parallel plate segmentP3500.0500.30.1
    P4500.0500.40.1
    P5500.0500.30.1
    great circle segment
    P6499.5500.90.3
    P7499.5500.90.1
    下载: 导出CSV

    表  2  理论计算与Chipic模拟的点的磁场分布对比

    Table  2.   Comparison of magnetic field distribution between theoretical calculation and Chipic simulation point

    theoretical calculation/Tchipic simulation/Trelative error/%
    small circle segmentP11.6481.6641.0
    P21.6481.6691.3
    parallel plate segmentP31.6531.6691.0
    P41.6531.6691.0
    P51.6531.6701.0
    great circle segmentP61.6521.6711.2
    P71.6521.6681.0
    下载: 导出CSV
  • [1] Turchi P J, Baker W L. Generation of high-energy plasmas by electromagnetic implosion[J]. Journal of Applied Physics, 1973, 44(11): 4936-4945.
    [2] 赵小明. 磁化靶聚变等离子体电磁内爆压缩模拟研究[D]. 北京: 中国工程物理研究院, 2019: 5-7

    Zhao Xiaoming. Simulation on the compression of magnetized target fusion plasma by imploding solid liner[D]. Beijing: China Academy of Engineering Physics, 2019: 5-7
    [3] Matsuka W, Lee H. Determining the temperature and density distributions from a Z-pinch radiation source[C]//11th IEEE International Pulsed Power Conference. 1997: 826-831.
    [4] 肖德龙, 戴自换, 孙顺凯, 等. Z箍缩动态黑腔驱动靶丸内爆动力学[J]. 物理学报, 2018, 67:025203. (Xiao Delong, Dai Zihuan, Sun Shunkai, et al. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion[J]. Acta Physica Sinica, 2018, 67: 025203 doi: 10.7498/aps.67.20171640
    [5] Asay J R, Hall C A, Knudson M D. Recent advances in high-pressure equation-of-state capabilities[R]. SAND2000-0849C, 2000.
    [6] 宋盛义. 圆盘锥磁绝缘传输系统电磁性能及结构力学理论计算[D]. 北京: 中国工程物理研究院, 2004: 7-10

    Song Shengyi. Calculation of electromagnetic performance and structural mechanics of the circular-conic magnetically insulated transmission line[D]. Beijing: China Academy of Engineering Physics, 2004: 7-10
    [7] Spielman R B, Deeney C, Chandler G A, et al. PBFA Z: a 60-TW/5-MJ Z-pinch driver[J]. AIP Conference Proceedings, 1997, 409(1): 101-118.
    [8] Zhang Pengfei, Hu Yang, Yang Hailiang, et al. Experimental study on magnetically insulated transmission line electrode surface evolution process under MA/cm current density[J]. Physics of Plasmas, 2016, 23: 0133105.
    [9] Zou Wenkang, Wei Bing, Liu Laqun, et al. Coaxial-conical transition in magnetically insulated transmission line[J]. IEEE Transactions on Plasma Science, 2018, 46(6): 1913-1920.
    [10] 邹文康, 郭帆, 王贵林, 等. 聚龙一号装置磁绝缘传输线的电流损失特性[J]. 高电压技术, 2015, 41(6):1844-1851. (Zou Wenkang, Guo Fan, Wang Guilin, et al. Current loss properties of the magnetically insulated transmission line in the PTS facility[J]. High Voltage Engineering, 2015, 41(6): 1844-1851
    [11] 毛重阳, 薛创, 肖德龙, 等. “聚龙一号”4层绝缘堆和真空区电路模拟方法[J]. 强激光与粒子束, 2020, 32:025004. (Mao Chongyang, Xue Chuang, Xiao Delong, et al. Simulation method of quadruple-level circuit model for stack and vacuum section of Julong-I facility[J]. High Power Laser and Particle Beams, 2020, 32: 025004 doi: 10.11884/HPLPB202032.190330
    [12] Leopold J G, Navon I. Instabilities in the electron flow along magnetically insulated transmission lines[C]//2013 Abstracts IEEE International Conference on Plasma Science (ICOPS). 2013: 1.
    [13] Leopold J G, Gad R, Navon I. The flow dynamics along non-uniform self magnetically insulated transmission lines[C]//2011 IEEE Pulsed Power Conference. 2011: 856-860.
    [14] Madrid E A, Rose D V, Welch D R, et al. Steady-state modeling of current loss in a post-hole convolute driven by high power magnetically insulated transmission lines[J]. Physical Review Accelerators and Beams, 2013, 16: 120401.
    [15] 赵海龙, 董烨, 周海京, 等. 脉冲功率装置汇流区由电子发射导致的电流损失机制[J]. 强激光与粒子束, 2016, 28:015009. (Zhao Hailong, Dong Ye, Zhou Haijing, et al. Preliminary evaluation of current loss mechanism caused by electron emission at current convergence region on pulsed power facilities[J]. High Power Laser and Particle Beams, 2016, 28: 015009 doi: 10.11884/HPLPB201628.015009
    [16] 周良骥, 邓建军, 蒋吉昊, 等. 一种磁绝缘汇集电流结构: 202020285042.5[P]. 2020-09-01

    Zhou Liangji, Deng Jianjun, Jiang Jihao, et al. Magnetic insulation current collection structure: 202020285042.5[P]. 2020-09-01
    [17] 戴巍, 朱旭智, 刘腊群, 等. “聚龙一号”装置四层圆盘锥磁绝缘传输线的三维粒子模拟研究[J]. 现代电子技术, 2015, 38(3):144-148. (Dai Wei, Zhu Xuzhi, Liu Laqun, et al. Study on 3-D particle simulation of four-level coaxial circular-cone magnetically-insulated transmission line for “JuLong-1”[J]. Modern Electronics Technique, 2015, 38(3): 144-148 doi: 10.3969/j.issn.1004-373X.2015.03.044
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  710
  • HTML全文浏览量:  195
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-17
  • 修回日期:  2022-03-17
  • 录用日期:  2022-03-18
  • 网络出版日期:  2022-03-24
  • 刊出日期:  2022-06-15

目录

    /

    返回文章
    返回