留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量热法的大功率毫米波功率测量及校准系统设计

黄麒力 胡林林 马国武 孙迪敏 龚胜刚 卓婷婷 金晓 张翠翠

黄麒力, 胡林林, 马国武, 等. 基于量热法的大功率毫米波功率测量及校准系统设计[J]. 强激光与粒子束, 2022, 34: 043005. doi: 10.11884/HPLPB202234.210501
引用本文: 黄麒力, 胡林林, 马国武, 等. 基于量热法的大功率毫米波功率测量及校准系统设计[J]. 强激光与粒子束, 2022, 34: 043005. doi: 10.11884/HPLPB202234.210501
Huang Qili, Hu Linlin, Ma Guowu, et al. Design of high power millimeter wave power measurement and calibration system based on calorimetry[J]. High Power Laser and Particle Beams, 2022, 34: 043005. doi: 10.11884/HPLPB202234.210501
Citation: Huang Qili, Hu Linlin, Ma Guowu, et al. Design of high power millimeter wave power measurement and calibration system based on calorimetry[J]. High Power Laser and Particle Beams, 2022, 34: 043005. doi: 10.11884/HPLPB202234.210501

基于量热法的大功率毫米波功率测量及校准系统设计

doi: 10.11884/HPLPB202234.210501
基金项目: 科工局技术基础项目(JSJL2019212B006);国家自然科学基金项目(U1830201);中国工程物理研究院创新发展基金项目(CX2019038)
详细信息
    作者简介:

    黄麒力,huangqilicaep@163.com

    通讯作者:

    孙迪敏,sundimin@caep.cn

  • 中图分类号: TN129

Design of high power millimeter wave power measurement and calibration system based on calorimetry

  • 摘要: 在百千瓦或兆瓦级大功率毫米波系统中一般采用量热法对输出的毫米波功率进行测量。针对百千瓦级长脉冲大功率毫米波系统功率测量的需要,开展了基于量热法的功率测量系统设计,利用吸收负载将入射的毫米波能量转换为热量,通过监测出入水口的温度和流量实现了大功率毫米波功率测量,并开展了重复性测试。为了实现量值溯源,提高测量系统的准确性,开展了能量标准装置的设计,并推导了能量测量误差。
  • 图  1  吸收负载示意图

    Figure  1.  Schematic arrangement of the dummy loads

    图  2  吸收负载测量模型示意图

    Figure  2.  Schematic diagram of dummy load measurement model

    图  3  校准系统示意图

    Figure  3.  Schematic diagram of calibration system

    图  4  400 kW/5 s吸收负载典型功率响应曲线

    Figure  4.  Typical power response waveform of the dummy load

    表  1  重复测试得到的功率

    Table  1.   Power measurement results by repeated experiments

    No.pulse width/spower/kW
    1 5 416
    2 5 414
    3 5 420
    4 5 415
    5 5 412
    下载: 导出CSV
  • [1] Nusinovich G S, Thumm M K A, Petelin M I. The gyrotron at 50: historical overview[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35(4): 325-381. doi: 10.1007/s10762-014-0050-7
    [2] Sykes A, Gryaznevich M P, Kingham D, et al. Recent advances on the spherical tokamak route to fusion power[J]. IEEE Transactions on Plasma Science, 2014, 42(3): 482-488. doi: 10.1109/TPS.2014.2304569
    [3] 胡林林, 马国武, 孙迪敏, 等. 28 GHz/50 kW准光输出连续波回旋管[J]. 强激光与粒子束, 2019, 31:060101. (Hu Linlin, Ma Guowu, Sun Dimin, et al. A 28 GHz/50 kW continuous wave gyrotron with quasi-optical output[J]. High Power Laser and Particle Beams, 2019, 31: 060101 doi: 10.11884/HPLPB201931.190139
    [4] Xu Weiye, Xu Handong, Liu Fukun, et al. Calorimetric power measurements in the EAST ECRH system[J]. Plasma Science and Technology, 2017, 19: 105602. doi: 10.1088/2058-6272/aa7ec9
    [5] Bin W, Bruschi A, Takahashi K, et al. Validation experiments on the 2-MW CW 170-GHz load for the European ITER gyrotron[J]. IEEE Transactions on Plasma Science, 2017, 45(3): 501-511. doi: 10.1109/TPS.2017.2658184
    [6] Bin W, Bruschi A, Cirant S, et al. Absorbing coatings for high power millimeter-wave devices and matched loads[J]. Fusion Engineering and Design, 2013, 88(9/10): 2510-2514.
    [7] Floristán M, Müller P, Gebhardt A, et al. Development and testing of 140 GHz absorber coatings for the water baffle of W7-X cryopumps[J]. Fusion Engineering and Design, 2011, 86(9/11): 1847-1850.
    [8] Ives R L, Mizuhara M, Collins G, et al. Design and operation of a 2 MW CW, RF load for gyrotrons[C]//Proceedings of the 14th International Vacuum Electronics Conference (IVEC). 2013: 1-2.
    [9] Ioki K, Hiranai S, Moriyama S, et al. Development of a dummy load and waveguide components for 1 MW CW gyrotron[J]. Fusion Engineering and Design, 2016, 109/111: 951-955. doi: 10.1016/j.fusengdes.2016.01.046
    [10] Schmid M, Erckmann V, Gantenbein G, et al. Technical developments at the KIT gyrotron test facility[J]. Fusion Engineering and Design, 2011, 86(6/8): 518-521.
    [11] 陆志鸿, 易良碧, 白兴宇, 等. HL-2A装置ECRH系统的微波功率测量[J]. 核聚变与等离子体物理, 2008, 28(1):54-59. (Lu Zhihong, Yi Liangbi, Bai Xinyu, et al. Power measurement of microwave for ECRH system on the HL-2A tokamak[J]. Nuclear Fusion and Plasma Physics, 2008, 28(1): 54-59 doi: 10.3969/j.issn.0254-6086.2008.01.011
    [12] 吴大俊. EAST电子回旋加热高功率毫米波传输关键技术研究[D]. 合肥: 中国科学技术大学, 2019

    Wu Dajun. Research of key technologies of high power millimeter wave transmission on EAST ECRH[D]. Hefei: University of Science and Technology of China, 2019
    [13] 娄喆飞, 罗积润, 李文奇, 等. 适用于140GHz, 1MW回旋管的水负载反射镜面设计[C]//中国电子学会真空电子学分会第二十一届学术年会论文集. 2018

    Lou Zhefei, Luo Jirun, Li Wenqi, et al. Water loaded mirror design for 140GHz, 1MW Gyrotron[C]//Proceedings of the 21st Annual Academic Conference of Vacuum Electronics Branch of Chinese Institute of Electronics. 2018
    [14] 王贺, 陆志鸿, 周俊, 等. HL-2A装置ECRH系统传输效率的测量研究[J]. 核聚变与等离子体物理, 2010, 30(3):236-240. (Wang He, Lu Zhihong, Zhou Jun, et al. Transmission efficiency of the ECRH system on HL-2A tokamak[J]. Nuclear Fusion and Plasma Physics, 2010, 30(3): 236-240 doi: 10.3969/j.issn.0254-6086.2010.03.010
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  794
  • HTML全文浏览量:  385
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-20
  • 修回日期:  2021-12-23
  • 网络出版日期:  2022-01-06
  • 刊出日期:  2022-03-19

目录

    /

    返回文章
    返回