Actinide nuclear targets preparation and applications
-
摘要:
基础核物理、核能开发、超重元素研制等领域对精确、值得信赖的核参数的需求日益增大,锕系核靶作为核数据测量实验的核心部件,其产品种类及关键质量参数的优劣直接制约核数据测量的发展水平。系统介绍了国内外锕系核靶制备及检测方法以及国内外核靶研究团队技术储备及发展方向。
Abstract:There is an increasing demand on precise, accurate and reliable experimental nuclear data in various scientific research fields like basic nuclear physics, nuclear energy, super-heavy element research and others. Actinide targets are composed of a thin-layer, pure actinide compound deposited on a certain metal foil. Acting as the stationary nuclei sources in nuclear reactions, high-quality actinide targets are essential for the uncertainty of the measured nuclear data and ensure the success of the relative experiments. In this review, the preparation methods of actinide nuclear targets, the development of organizations of nuclear targets, and the outlook are discussed.
-
图 1 分子镀装置示意图(a)及分子镀锕系核靶光学照片(b)[20]
Figure 1. (a) Sketch of the electroplating device and (b) the optical image of the actinide target electroplated with optimized parameters
表 1 不同核靶制备方法特点
Table 1. Characteristics of different nuclear target preparation methods
method mass thickness efficiency/% advantages disadvantages electro-spraying mg/cm2 80~90 high efficiency; homogeneity
(2%~5%); simple equipmentimpurities from solvent;
thickness limitationelectro-deposition μg/cm2~mg/cm2 90~100 high efficiency; fast and simple;
no cross contaminationimpurities from solvent; deposits composition is unknown vacuum evaporation μg/cm2~mg/cm2 5~10 the coating is smooth; the thickness homogeneity is high low efficiency; time-consuming preparation of the material for evaporation; substrate is easily deformed by heat magnetron sputtering μg/cm2~mg/cm2 20~40 the coating is smooth, strong
adhesion of coatingbig amount of the evaporated
materials are requiredpolymer assisted deposition μg/cm2 80~90 simple, the coating is smooth thickness limitation 表 2 真空蒸镀方法适用的底衬种类
Table 2. Type of substrates suitable for vacuum evaporation
types of backing material metal Al, Cu, Au, Ni, Ta, et al polymer formvar ([C5H8O2]n),
mylar (PET polyethylene terephthalate ([C10H8O4]n),
nylon (polyaMide [NH–(CH2)5–CO]n), VYNS (vinylit resin ([C6H9O2Cl]n), et al.others Si, Al2O3, SiC, et al -
[1] Schumann D, Sibbens G, Stolarz A, et al. ANITA (Advanced Network for Isotope and TArget laboratories) – The urgent need for a European target preparation network[J]. AIP Conference Proceedings, 2018, 1962: 020001. [2] Eberhardt K, Düllmann C E, Haas R, et al. Actinide targets for fundamental research in nuclear physics[J]. AIP Conference Proceedings, 2018, 1962: 030009. [3] Chadwick M B, Capote R, Trkov A, et al. CIELO collaboration summary results: international evaluations of neutron reactions on uranium, plutonium, iron, oxygen and hydrogen[J]. Nuclear Data Sheets, 2018, 148: 189-213. doi: 10.1016/j.nds.2018.02.003 [4] Roberto J B, Alexander C W, Boll R A, et al. Actinide targets for the synthesis of super-heavy elements[J]. Nuclear Physics A, 2015, 944: 99-116. doi: 10.1016/j.nuclphysa.2015.06.009 [5] Letourneau A, Bringer O, Chabod S P, et al. Recent developments on micrometric fission chambers dedicated for high neutron fluxes[J]. IEEE Transactions on Nuclear Science, 2011, 58(4): 1913-1920. doi: 10.1109/TNS.2011.2155670 [6] 周小红, 徐瑚珊. 合成和发现超铀化学元素、探索超重核稳定岛[J]. 物理, 2019, 48(10):640-648. (Zhou Xiaohong, Xu Hushan. Search for and synthesis of transuranium elements, and exploration of the stability island of superheavy nuclides[J]. Physics, 2019, 48(10): 640-648 doi: 10.7693/wl20191003 [7] Stolarz A, Eykens R, Moens A, et al. Actinide target preparation at IRMM—then and now[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 613(3): 351-356. [8] Verdingh V. The preparation of layers by electrospraying and electrophoresis[J]. Nuclear Instruments and Methods, 1972, 102(3): 497-500. doi: 10.1016/0029-554X(72)90639-8 [9] Pauwels J, Tjoonk J. Spraypainting of deposits for nuclear measurements[J]. Nuclear Instruments and Methods, 1979, 167(1): 77-79. doi: 10.1016/0029-554X(79)90481-6 [10] Baker J D, McGrath C A, Hill T S, et al. Actinide targets for neutron cross section measurements[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 276(2): 555-560. doi: 10.1007/s10967-008-0541-x [11] Oh J S, Warwick P E, Croudace I W, et al. Evaluation of three electrodeposition procedures for uranium, plutonium and americium[J]. Applied Radiation and Isotopes, 2014, 87: 233-237. doi: 10.1016/j.apradiso.2013.11.048 [12] Crespo M T. A review of electrodeposition methods for the preparation of alpha-radiation sources[J]. Applied Radiation and Isotopes, 2012, 70(1): 210-215. doi: 10.1016/j.apradiso.2011.09.010 [13] Sibbens G, Moens A, Eykens R, et al. Preparation of 240Pu and 242Pu targets to improve cross-section measurements for advanced reactors and fuel cycles[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(2): 1093-1098. doi: 10.1007/s10967-013-2668-7 [14] Bond E M, Moody W A, Bredeweg T A. Production of double-sided targets by electrodeposition: initial evaluation and optimization of performance[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 296(2): 847-851. doi: 10.1007/s10967-012-2142-y [15] Sibbens G, Ernstberger M, Gouder T, et al. Morphological and compositional study of 238U thin film targets for nuclear experiments[J]. AIP Conference Proceedings, 2018, 1962: 030007. [16] Vascon A, Santi S, Isse A A, et al. Smooth crack-free targets for nuclear applications produced by molecular plating[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 714: 163-175. [17] Vascon A, Santi S, Isse A A, et al. Elucidation of constant current density molecular plating[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 696: 180-191. [18] Vascon A, Wiehl N, Runke J, et al. Improving material properties and performance of nuclear targets for transmutation-relevant experiments[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 305(3): 913-919. doi: 10.1007/s10967-014-3916-1 [19] Vascon A, Runke J, Trautmann N, et al. Quantitative molecular plating of large-area 242Pu targets with improved layer properties[J]. Applied Radiation and Isotopes, 2015, 95: 36-43. doi: 10.1016/j.apradiso.2014.10.002 [20] He Yao, Han Lianhuan, Wang Chao, et al. Molecular plating of actinide compounds on wafer-scale aluminum substrate[J]. Journal of Alloys and Compounds, 2021, 878: 160393. doi: 10.1016/j.jallcom.2021.160393 [21] Sibbens G, Moens A, Vanleeuw D, et al. Multi-layer 235UF4-6LiF–Au targets for high-resolution fission fragment measurements[J]. Applied Radiation and Isotopes, 2014, 87: 229-232. doi: 10.1016/j.apradiso.2013.11.061 [22] Vanleeuw D, Sibbens G, Plompen A. Determination of the hydrogen content of thick tristearin layers prepared by physical vapour deposition[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 305(3): 957-962. doi: 10.1007/s10967-015-4156-8 [23] Gursky J C, Povelites J G. Fifth annual conference of the International Nuclear Target Development Society[R]. Los Alamos Scientific Lab N Mex (USA), 1977. [24] Stolarz A. Target preparation for research with charged projectiles[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(2): 913-931. doi: 10.1007/s10967-013-2652-2 [25] Vanleeuw D, Lewis D, Moens A, et al. Implementation of new integrated evaporation equipment for the preparation of 238U targets and improvement of the deposition process[J]. AIP Conference Proceedings, 2018, 1962: 030008. [26] 易泰民, 邢丕峰, 李朝阳, 等. 金属铀膜的制备及应用现状[J]. 核技术, 2009, 32(12):905-910. (Yi Taimin, Xing Pifeng, Li Chaoyang, et al. Progresses in uranium film fabrication and application[J]. Nuclear Techniques, 2009, 32(12): 905-910 doi: 10.3321/j.issn:0253-3219.2009.12.007 [27] 易泰民, 邢丕峰, 唐永建, 等. 磁控溅射制备金属铀膜[J]. 原子能科学技术, 2010, 44(7):869-872. (Yi Taimin, Xing Pifeng, Tang Yongjian, et al. Preparation of metal uranium films by magnetron sputtering[J]. Atomic Energy Science and Technology, 2010, 44(7): 869-872 [28] Drapchinsky L V, Shpakov V I. Preparation of actinide targets by radio-frequency sputtering[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 362(1): 100-103. [29] Jia Q, McCleskey T M, Burrell A K, et al. Polymer-assisted deposition of metal-oxide films[J]. Nature Materials, 2004, 3(8): 529-532. doi: 10.1038/nmat1163 [30] Scott B L, Joyce J J, Durakiewicz T D, et al. High quality epitaxial thin films of actinide oxides, carbides, and nitrides: advancing understanding of electronic structure of f-element materials[J]. Coordination Chemistry Reviews, 2014, 266/267: 137-154. doi: 10.1016/j.ccr.2013.09.019 [31] Ali M N, Garcia M A, Parsons-Moss T, et al. Polymer-assisted deposition of homogeneous metal oxide films to produce nuclear targets[J]. Nature Protocols, 2010, 5(8): 1440-1446. doi: 10.1038/nprot.2010.105 [32] Oganessian Y. Heaviest nuclei from 48Ca-induced reactions[J]. Journal of Physics G:Nuclear and Particle Physics, 2007, 34(4): R165-R242. doi: 10.1088/0954-3899/34/4/R01 [33] Maugeri E A, Heinitz S, Dressler R, et al. Preparation of 7Be targets for nuclear astrophysics research[J]. Journal of Instrumentation, 2017, 12: P02016. doi: 10.1088/1748-0221/12/02/P02016 [34] Haas R, Lohse S, Düllmann C E, et al. Development and characterization of a Drop-on-Demand inkjet printing system for nuclear target fabrication[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 874: 43-49. [35] von der Wense L C, Seiferle B, Schneider C, et al. The concept of laser-based conversion electron Mössbauer spectroscopy for a precise energy determination of 229mTh[J]. Hyperfine Interactions, 2019, 240: 23. doi: 10.1007/s10751-019-1564-0 [36] Rau S, Heiße F, Köhler-Langes F, et al. Penning trap mass measurements of the deuteron and the HD+ molecular ion[J]. Nature, 2020, 585(7823): 43-47. doi: 10.1038/s41586-020-2628-7 [37] Bredeweg T A. Nuclear science at LANL: facilities and capabilities[C]//Proceedings of the 9th Tri-lab Nuclear Data Workshop. Los Alamos: Los Alamos National Lab. (LANL), 2018. [38] Liebe D, Eberhardt K, Hartmann W, et al. The application of neutron activation analysis, scanning electron microscope, and radiographic imaging for the characterization of electrochemically deposited layers of lanthanide and actinide elements[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 590(1/3): 145-150. [39] 符燕, 梁珺成, 邹宇, 等. 磷屏成像的计量性能测试及其在大面积平面源均匀性评价中的应用[J]. 核化学与放射化学, 2017, 39(1):83-89. (Fu Yan, Liang Juncheng, Zou Yu, et al. Metrology performance test of phosphor screen imaging and its application on uniformity evaluating of large-area sources[J]. Journal of Nuclear and Radiochemistry, 2017, 39(1): 83-89 doi: 10.7538/hhx.2017.39.01.0083 [40] 王沥苑. 基于小立体角方法的冷凝Rn-222源绝对测量[D]. 南昌: 东华理工大学, 2018Wang Liyuan. Condensation Rn-222 source absolute measurement based on the small solid angle method[D]. Nanchang: East China University of Technology, 2018 [41] Denecke B, Eykens R, Pauwels J, et al. Characterization of actinide targets by low solid-angle alpha particle counting[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 438(1): 124-130. [42] Arinc A, Parfitt M J, Keightley J D, et al. Defined solid angle alpha counting at NPL[J]. Applied Radiation and Isotopes, 2016, 109: 198-204. doi: 10.1016/j.apradiso.2015.11.073 [43] Ko Y G, Lim J M, Choi G S, et al. Characterizations of electrodeposited uranium layer on stainless steel disc[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 487: 121-130. [44] Sadi S, Paulenova A, Watson P R, et al. Growth and surface morphology of uranium films during molecular plating[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 655(1): 80-84. [45] Sibbens G, Moens A, Vanleeuw D, et al. Nuclear targets within the project of solving CHAllenges in Nuclear DAta[J]. EPJ Web of Conferences, 2017, 146: 03022. doi: 10.1051/epjconf/201714603022 [46] Henderson R A, Gostic J M, BurkeJ T, et al. Electrodeposition of uranium and plutonium on thin carbon and titanium substrates[R]. LLNL-PROC-471497, 2011. [47] Ayranov M, Schumann D. Preparation of 26Al, 59Ni, 44Ti, 53Mn and 60Fe from a proton irradiated copper beam dump[J]. Journal of Radioanalytical and Nuclear Chemistry, 2010, 286(3): 649-654. doi: 10.1007/s10967-010-0732-0 [48] Schumann D, Neuhausen J, Dillmann I, et al. Preparation of a 60Fe target for nuclear astrophysics experiments[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 613(3): 347-350. doi: 10.1016/j.nima.2009.09.072 [49] Fowler M M, Gursky J C, Wilhelmy J B. Preparation of actinide targets and sources using nonaqueous electrodeposition[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1991, 303(1): 99-101. [50] Roman A R, Zhao X, Bond E M, et al. 2017 report for new LANL physical vapor deposition capability[R]. Los Alamos: Los Alamos National Lab, 2017. [51] Greene J P, Ahmad I. Molecular plating of actinides on thin backings[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 590(1/3): 131-133. [52] FitzPatrick J R, Bond E, Slemmons A, et al. Preparation of americium targets for nuclear chemistry experiments at DANCE[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 276(2): 561-566. doi: 10.1007/s10967-008-0542-9 [53] Heffner M, Asner D M, Baker R G, et al. A time projection chamber for high accuracy and precision fission cross-section measurements[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 759: 50-64. [54] Geppert-Kleinrath V, Tovesson F, Barrett J S, et al. Fission fragment angular anisotropy in neutron-induced fission of 235U measured with a time projection chamber[J]. Physical Review C, 2019, 99: 064619. doi: 10.1103/PhysRevC.99.064619 [55] Loveland W. High quality actinide targets[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307(3): 1591-1594. doi: 10.1007/s10967-015-4337-5 [56] 魏永钦, 曹德林, 王秋玉. 235U、238U薄靶的制备[J]. 核技术, 1983(3):56. (Wei Yongqin, Cao Delin, Wang Qiuyu. The preparation of 235U and 238U thin film targets[J]. Nuclear Techniques, 1983(3): 56 [57] 秦芝, 郭俊盛, 甘再国. 分子镀法制备厚镅(241, 243Am) 靶[J]. 同位素, 2000, 13(4):209-214. (Qin Zhi, Guo Junsheng, Gan Zaiguo. Preparation of the thicker 241, 243Am targets by molecular plating method[J]. Journal of Isotopes, 2000, 13(4): 209-214 doi: 10.3969/j.issn.1000-7512.2000.04.004 [58] 白静, 吴晓蕾, 林茂盛, 等. 单次分子镀法制备部分La系及238U靶的实验研究[J]. 原子核物理评论, 2010, 27(2):187-191. (Bai Jing, Wu Xiaolei, Lin Maosheng, et al. Experimental study on preparation of some lanthanide and 238U targets by using single-cycle molecular plating method[J]. Nuclear Physics Review, 2010, 27(2): 187-191 doi: 10.11804/NuclPhysRev.27.02.187 [59] 罗旭. 分子电镀法制备237Np核靶[J]. 原子能科学技术, 2002, 36(4/5):409-412. (Luo Xu. Preparation of 237Np targets by molecular plating[J]. Atomic Energy Science and Technology, 2002, 36(4/5): 409-412 [60] 杨春莉, 吴俊德, 苏树新, 等. 分子镀法制备Th-232靶[C]//中国核科学技术进展报告——中国核学会2009年学术年会论文集 (第一卷·第 4 册). 北京: 中国核学会, 2009Yang Chunli, Wu Junde, Su Shuxin, et al. The preparation of Th-232 target by molecular plating method[C]//Progress Report on Nuclear Science and Technology in China (Vol. 1). Proceedings of Academic Annual Meeting of China Nuclear Society in 2009, No. 6--Radiochemical. Beijing: Chinese Nuclear Society, 2009 [61] 孙晓祎, 毛国淑, 黄昆, 等. 小面积Pu靶的制备[C]//第三届全囯核化学与放射化学青年学术研讨会论文摘要集. 南宁: 中国化学会, 2015Sun Xiaoyi, Mao Guoshu, Huang Kun, et al. The preparation of small-area Pu targets[C]//Abstracts of the 3rd National Youth Symposium on Nuclear Chemistry and Radiochemistry. Nanning: Chinese Chemical Society, 2015 [62] 陈琪萍, 钟文彬, 李有根. 电沉积法制备235U靶[J]. 中国核科技报告, 2004(2):53-61. (Chen Qiping, Zhong Wenbin, Li Yougen. Preparation of 235U target by electrodeposition[J]. China Nuclear Information Centre, 2004(2): 53-61 [63] 何佳恒, 陈琪萍, 党宇峰, 等. 电沉积法制备238U靶件的研究[J]. 表面技术, 2010, 39(6):80-83. (He Jiaheng, Chen Qiping, Dang Yufeng, et al. Preparation of 238U targets by electro-deposition method[J]. Surface Technology, 2010, 39(6): 80-83 doi: 10.3969/j.issn.1001-3660.2010.06.022 [64] 何佳恒, 陈琪萍, 党宇峰, 等. 管状电沉积铀靶的制备和检测[J]. 化学研究与应用, 2010, 22(2):248-252. (He Jiaheng, Chen Qiping, Dang Yufeng, et al. Preparation and testing techniques for Uranium target prepared by electro-deposition[J]. Chemical Research and Application, 2010, 22(2): 248-252 doi: 10.3969/j.issn.1004-1656.2010.02.027 [65] Wen Jie, Yang Yiwei, Wen Zhongwei, et al. Measurement of the U-238/U-235 fission cross section ratio at CSNS – Back-n WNS[J]. Annals of Nuclear Energy, 2020, 140: 107301. doi: 10.1016/j.anucene.2019.107301 [66] Ren Zhizhou, Yang Yiwei, Wen Jie, et al. Measurement of the 236U(n, f) cross section for neutron energies from 0.4 MeV to 40 MeV from the back-streaming white neutron beam at the China Spallation Neutron Source[J]. Physical Review C, 2020, 102: 034604. doi: 10.1103/PhysRevC.102.034604 [67] Bernstein L A, Brown D A, Koning A J, et al. Our future nuclear data needs[J]. Annual Review of Nuclear and Particle Science, 2019, 69: 109-136. doi: 10.1146/annurev-nucl-101918-023708 [68] Reichenberger M A, Nichols D M, Stevenson S R, et al. Fabrication and testing of a 4-node micro-pocket fission detector array for the Kansas State University TRIGA Mk. II research nuclear reactor[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 862: 8-17. [69] Reichenberger M A, Ito T, Ugorowski P B, et al. Electrodeposition of uranium and thorium onto small platinum electrodes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 812: 12-16.