Neutron irradiation effects of graphite serving in SPRR-300 reactor
-
摘要: 随SPRR-300研究堆约30 a的长时间运行,位于活性区附近的石墨箱体经历了长期的中子辐照。在长期服役的石墨箱体上取样,研究了其热学、力学以及微观结构变化,并与商用IG110,NG-CT-10石墨进行了对比。研究结果表明,经长时间低剂量率的中子辐照后,SPRR-300堆内随堆辐照石墨的晶格中出现了明显的辐照损伤缺陷,这些缺陷主要为位错环、层错、孔洞和微裂纹等,并出现了一定程度的非晶化。这些辐照损伤缺陷直接或间接地引起了石墨热学、力学性能的变化,主要表现为热膨胀系数、热扩散系数、抗压强度和抗弯强度的下降以及弯曲弹性模量的上升。
-
关键词:
- SPRR-300研究堆 /
- 石墨 /
- 中子辐照 /
- 辐照损伤 /
- 微观结构
Abstract: During the long period service in the SPRR-300 research reactor, the graphite box in the vicinity of the core has been irradiated for about 30 years. In this paper, we take samples from the graphite box and investigate the changes of the thermal, mechanical properties and microstructure, compare them with those of the commercial IG110 and NG-CT-10 graphite. We find that after the long-time service, the low fluence neutron irradiation has induced tremendous irradiation damage defects in the crystal structures of the SPRR-300 graphite. These defects are mainly dislocation loops, stacking faults, voids, microcracks, et al. A degree of amorphization has also been observed. Comparing with those of the IG110 and NG-CT-10 graphite, the coefficients of thermal expansion, thermal diffusivity, compression strength and the flexural strength of the SPRR-300 graphite decrease while the modulus of elasticity in flexure increase. The changes of the thermal and mechanical properties of the SPRR-300 graphite may due to the irradiation-induced defects.-
Key words:
- SPRR-300 research reactor /
- graphite /
- neutron irradiation /
- irradiation damage /
- microstructure
-
表 1 3种石墨不同温度段的热膨胀系数
Table 1. Coefficients of thermal expansion of three types of graphite in the temperature range of measurement
temperature/℃ coefficient of thermal expansion/10−6 300# IG110 NG-CT-10 30~100 2.942 6 4.100 5 4.747 9 100~200 3.436 7 4.790 1 4.767 7 200~300 2.987 9 5.221 0 4.760 1 300~400 2.546 4 5.371 4 4.966 0 400~500 2.306 4 5.316 3 4.676 7 500~600 1.760 3 5.232 2 4.810 1 表 2 3组石墨的抗压强度
Table 2. Compression strength of three types of graphite
graphite compression strength/MPa sample 1 sample 2 sample 3 average standard deviation 300# 63.3 76.1 61 66.8 8.1 IG110 86.4 87.4 89.4 87.7 1.5 NG-CT-10 102.9 99.7 103.7 102.1 2.1 表 3 3组石墨的抗弯强度
Table 3. Flexural strength of three types of graphite
graphite flexural strength/MPa sample 1 sample 2 sample 3 average standard deviation 300# 43.45 44.82 51.8 46.7 4.5 IG110 67.61 70.82 68.39 68.9 1.7 NG-CT-10 81.53 83.01 79.73 81.4 1.6 表 4 3组石墨的弯曲弹性模量
Table 4. Modulus of elasticity in flexure of three types of graphite
graphite modulus of elasticity in flexure/GPa sample 1 sample 2 sample 3 average standard deviation 300# 29.5 24.6 31.5 28.5 3.6 IG110 22.3 28.3 29.6 26.7 3.9 NG-CT-10 21.1 23.6 21.8 22.1 1.3 -
[1] Campbell A A, Burchell T D. Radiation effects in graphite[M]. Amsterdam: Elsevier Ltd, 2020. [2] 唐凤平, 刘耀光, 杨万奎, 等. 300#研究堆安全棒中子注量率计算中的减方差方法对比及应用[J]. 原子能科学技术, 2014, 48(s1):149-154. (Tang Fengping, Liu Yaoguang, Yang Wankui, et al. Comparison and application of variance reduction method employed in neutron fluence rate calculation for safety rod of SPRR-300[J]. Atomic Energy Science and Technology, 2014, 48(s1): 149-154 [3] Kelly B T, Jones D, James A. Irradiation damage to pile grade graphite at 450 ℃[J]. Journal of Nuclear Materials, 1962, 7(3): 279-291. [4] Burchell T D, Snead L L. The effect of neutron irradiation damage on the properties of grade NBG-10 graphite[J]. Journal of Nuclear Materials, 2007, 371(1/3): 18-27. [5] Heijna M C R, de Groot S, Vreeling J A. Comparison of irradiation behaviour of HTR graphite grades[J]. Journal of Nuclear Materials, 2017, 492: 148-156. [6] Kelly B, Marsden B, Hall K, et al. Irradiation damage in graphite due to fast neutrons in fission and fusion systems[R]. IAEA-TECDOC-1154, 2000. [7] Tang Z, Hasegawa M, Shimamura T, et al. Stable vacancy clusters in neutron-irradiated graphite: evidence for aggregations with a magic number[J]. Physical Review Letters, 1999, 82(12): 2532-2535. [8] Heggie M I, Suarez-Martinez I, Davidson C, et al. Buckle, ruck and tuck: a proposed new model for the response of graphite to neutron irradiation[J]. Journal of Nuclear Materials, 2011, 413(3): 150-155. [9] 邹彦文, 杜军, 张晓平. 国产部分细颗粒石墨的辐照行为[J]. 机械工程材料, 2001, 25(10):10-11,27. (Zou Yanwen, Du Jun, Zhang Xiaoping. Irradiation performance of graphite made in China[J]. Materials for Mechanical Engineering, 2001, 25(10): 10-11,27 doi: 10.3969/j.issn.1000-3738.2001.10.004 [10] 张宝亮. 核石墨的离子辐照效应及熔盐浸渗特性研究[D]. 济南: 山东大学, 2015Zhang Baoliang. Ion irradiation effects and molten salt impregnation property of nuclear graphite[D]. Ji’nan: Shandong University, 2015 [11] 张宁, 张鑫, 杨爱香, 等. 质子束辐照单层石墨烯的损伤效应[J]. 物理学报, 2017, 66(2):026103. (Zhang Ning, Zhang Xin, Yang Aixiang, et al. Damage effects of proton beam irradiation on single layer graphene[J]. Acta Physica Sinica, 2017, 66(2): 026103 doi: 10.7498/aps.66.026103 [12] 杨万奎, 曾和荣, 冷军, 等. 300#研究堆首炉中央孔道中子通量密度计算[J]. 强激光与粒子束, 2012, 24(12):3001-3005. (Yang Wankui, Zeng Herong, Leng Jun, et al. Neutron flux calculation for central channel in first cycle of SPRR-300[J]. High Power Laser and Particle Beams, 2012, 24(12): 3001-3005 [13] Telling R H, Heggie M I. Radiation defects in graphite[J]. Philosophical Magazine, 2007, 87(31): 4797-4846. [14] Snead L L, Burchell T D. Thermal conductivity degradation of graphites due to nuetron irradiation at low temperature[J]. Journal of Nuclear Materials, 1995, 224(3): 222-229. [15] Zhou Z, Bouwman W G, Schut H, et al. Interpretation of X-ray diffraction patterns of (nuclear) graphite[J]. Carbon, 2014, 69: 17-24. [16] Krishna R, Wade J, Jones A N, et al. An understanding of lattice strain, defects and disorder in nuclear graphite[J]. Carbon, 2017, 124: 314-333.