留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铍组件堆内长期服役后的尺寸测量

刘晓 杨万奎 王浩 王健 张松宝 张新荣 李文华

刘晓, 杨万奎, 王浩, 等. 铍组件堆内长期服役后的尺寸测量[J]. 强激光与粒子束, 2022, 34: 056009. doi: 10.11884/HPLPB202234.210516
引用本文: 刘晓, 杨万奎, 王浩, 等. 铍组件堆内长期服役后的尺寸测量[J]. 强激光与粒子束, 2022, 34: 056009. doi: 10.11884/HPLPB202234.210516
Liu Xiao, Yang Wankui, Wang Hao, et al. Size measurements of beryllium assemblies after long term service[J]. High Power Laser and Particle Beams, 2022, 34: 056009. doi: 10.11884/HPLPB202234.210516
Citation: Liu Xiao, Yang Wankui, Wang Hao, et al. Size measurements of beryllium assemblies after long term service[J]. High Power Laser and Particle Beams, 2022, 34: 056009. doi: 10.11884/HPLPB202234.210516

铍组件堆内长期服役后的尺寸测量

doi: 10.11884/HPLPB202234.210516
基金项目: 国家自然科学基金项目(11675154,41630315);国防科工局核能开发项目
详细信息
    作者简介:

    刘 晓,liuxiao6161@163.com

  • 中图分类号: TL342

Size measurements of beryllium assemblies after long term service

  • 摘要: 铍是核反应堆内的重要反射层材料,其辐照后的尺寸变化对反应堆的安全性具有重要的影响。为获得铍组件堆内长期服役后的尺寸变化,以对其堆内的服役性能评价提供基础数据,设计并加工了一套高放样品远程转运平台,使用三坐标测量机完成了绵阳SPRR-300堆内铍组件的尺寸变化测量实验。实验测量结果表明,SPRR-300堆的铍组件在服役29 a后,在最高中子通量高达6.78×1021 cm−2的辐照环境下,铍组件外形尺寸总体上保持良好,截面有微量的收缩变形,最大形变约0.13 mm,这表明在长期中子辐照环境下,辐照蠕变是导致铍组件尺寸变化的主要原因。
  • 图  1  绵阳SPRR-300反应堆装载示意图

    Figure  1.  Scheme of assemblies for SPRR-300 reactor

    图  2  铍组件沿x轴向的中子注量分布

    Figure  2.  Neutron fluence of beryllium assemblies along x axial segment

    图  3  铍组件结构示意图

    Figure  3.  Structure scheme of beryllium assemblies

    图  4  转运吊蓝和长柄吊钩

    Figure  4.  Transport nacelle and long handle hook

    图  5  铍组件的测量

    Figure  5.  Measurement of beryllium assemblies

    图  6  E1铍组件平面度测量结果

    Figure  6.  Plane degree of E1 beryllium assembly

    表  1  测量所用铍组件的服役时间与最大中子注量

    Table  1.   Service-time and maximum neutron fluence of beryllium assemblies

    No.service-time/aservice durationmaximum neutron fluence/cm−2
    C3141995—20083.29E+20
    F4291979—20085.17E+21
    J3291979—20085.66E+21
    E1291979—20086.78E+21
    下载: 导出CSV

    表  2  铍组件的平面度

    Table  2.   Plane degree of beryllium assemblies

    No.the average neutron fluence of measuring position/cm−2xz/mmxz/mm+xy/mmxy/mm
    C32.68E+200.061 20.004 50.056 30.047 8
    F44.33E+210.120 20.000 40.132 80.119 8
    J34.71E+210.059 80.020 30.071 70.107 4
    E15.60E+210.025 10.000 10.059 70.060 0
    Note: the x-axis, y-axis and z-axis parallel the direction of length, width and height, respectively.
    下载: 导出CSV

    表  3  铍组件辐照前后的截面尺寸

    Table  3.   Section of beryllium assemblies

    No.the average neutron fluence of
    measuring position/cm−2
    width/mmheight/mmthe average distance of
    width and height/mm
    deformation
    degree/mm
    original067.850 067.850 067.850 00
    C32.68E+2068.123 868.008 368.066 10.216 1
    F44.33E+2167.435 368.046 167.740 7–0.109 3
    J34.71E+2167.463 867.457 267.460 5−0.389 5
    E15.60E+2167.533 967.887 467.710 7−0.139 3
    下载: 导出CSV
  • [1] 单润华, 王日清, 李满昌, 等. 高通量工程试验反应堆铍孔道在辐照上的综合利用[J]. 核动力工程, 1983, 4(5):7-15. (Shan Runhua, Wang Riqing, Li Manchang, et al. General uses of the holes in beryllium slugs in HFETR on irradiation[J]. Nuclear Power Engineering, 1983, 4(5): 7-15
    [2] Hoyer A. Lifetime analysis of irradiated beryllium in research reactors[D]. Columbia: University of Missouri, 2017: 1-10.
    [3] Snead L L, Zinkle S J. Use of beryllium and beryllium oxide in space reactors[J]. AIP Conference Proceedings, 2005, 746(1): 768-775.
    [4] Nie Y, Ren J, Ruan X, et al. The benchmark experiment on slab beryllium with D-T neutrons for validation of evaluated nuclear data[J]. Fusion Engineering and Design, 2016, 105: 8-14. doi: 10.1016/j.fusengdes.2016.01.049
    [5] Harmsen A G, Hoover M D, Seiler F A. Health risk implications of using beryllium in fusion reactors[J]. Journal of Nuclear Materials, 1984, 122(1/3): 821-826.
    [6] Gelles D S, Heinisch H L. Neutron damage in beryllium[J]. Journal of Nuclear Materials, 1992, 191/194: 194-198. doi: 10.1016/S0022-3115(09)80032-9
    [7] Nankov N, Troev T, Petrov L, et al. Positron lifetime calculations of defects in fusion irradiated beryllium[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2008, 266(15): 3392-3396. doi: 10.1016/j.nimb.2008.03.240
    [8] Ishitsuka E, Kawamura H. Beryllium neutron irradiation study in the Japan materials testing reactor[J]. Fusion Engineering and Design, 1998, 41(1/4): 195-200.
    [9] 王文利. 重水堆燃料铍材国产化及入堆验证试验[J]. 核动力工程, 2015, 36(5):208-210. (Wang Wenli. Beryllium localization and verification test of PHWR fuel[J]. Nuclear Power Engineering, 2015, 36(5): 208-210
    [10] 张松宝, 杨万奎, 窦海峰. SPRR-300堆寿期后关键结构材料辐照注量的理论计算[R]. GF-A0183454G, 2013

    Zhang Songbao, Yang Wankui, Dou Haifeng. The integral flux calculation of the structural of No. 300 reactor after commission[R]. GF-A0183454G, 2013
    [11] 杨万奎, 曾和荣, 冷军, 等. 300#研究堆首炉中央孔道中子通量密度计算[J]. 强激光与粒子束, 2012, 24(12):3001-3005. (Yang Wankui, Zeng Herong, Leng Jun, et al. Neutron flux calculation for central channel in first cycle of SPRR-300[J]. High Power Laser and Particle Beams, 2012, 24(12): 3001-3005 doi: 10.3788/HPLPB20122412.3001
    [12] 李婷婷. 铍和氧化铍电子、弹性性质的第一性原理计算[D]. 银川: 宁夏大学, 2015: 1-20

    Li Tingting. First principle calculation of electronic and elastic properties of beryllium and beryllium oxide[D]. Yinchuan: Ningxia University, 2015: 1-20
    [13] Savino E J, Laciana C E. Radiation induced creep and growth of zirconium alloys[J]. Journal of Nuclear Materials, 1980, 90(1/3): 89-107.
    [14] Chakin V P, Posevin A O, Оbukhov A V, et al. Radiation growth of beryllium[J]. Journal of Nuclear Materials, 2009, 386/388: 206-209. doi: 10.1016/j.jnucmat.2008.12.097
    [15] Scaffidi-Argentina F. Tritium and helium release from neutron irradiated beryllium pebbles from the EXOTIC-8 irradiation[J]. Fusion Engineering and Design, 2001, 58/59: 641-645. doi: 10.1016/S0920-3796(01)00510-5
    [16] Möslang A, Pieritz R A, Boller E, et al. Gas bubble network formation in irradiated beryllium pebbles monitored by X-ray microtomography[J]. Journal of Nuclear Materials, 2009, 386/388: 1052-1055. doi: 10.1016/j.jnucmat.2008.12.258
    [17] Kupriyanov I B, Melder R R, Gorokhov V A. The effect of neutron irradiation on beryllium performance[J]. Fusion Engineering and Design, 2000, 51/52: 135-143. doi: 10.1016/S0920-3796(00)00306-9
    [18] Chakin V P, Kazakov V A, Melder R R, et al. Effects of neutron irradiation at 70-200 ℃ in beryllium[J]. Journal of Nuclear Materials, 2002, 307/311: 647-652. doi: 10.1016/S0022-3115(02)01218-7
    [19] Snead L L. Low-temperature low-dose neutron irradiation effects on beryllium[J]. Journal of Nuclear Materials, 2004, 326(2/3): 114-124.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  610
  • HTML全文浏览量:  234
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-24
  • 修回日期:  2022-03-30
  • 网络出版日期:  2022-04-09
  • 刊出日期:  2022-05-15

目录

    /

    返回文章
    返回