留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电弧射流激励器工作特性仿真研究

袁野 张岩 赵青 黄小平 郭成

袁野, 张岩, 赵青, 等. 电弧射流激励器工作特性仿真研究[J]. 强激光与粒子束, 2022, 34: 065003. doi: 10.11884/HPLPB202234.210527
引用本文: 袁野, 张岩, 赵青, 等. 电弧射流激励器工作特性仿真研究[J]. 强激光与粒子束, 2022, 34: 065003. doi: 10.11884/HPLPB202234.210527
Yuan Ye, Zhang Yan, Zhao Qing, et al. Numerical study on the characteristics of an arc jet plasma actuator[J]. High Power Laser and Particle Beams, 2022, 34: 065003. doi: 10.11884/HPLPB202234.210527
Citation: Yuan Ye, Zhang Yan, Zhao Qing, et al. Numerical study on the characteristics of an arc jet plasma actuator[J]. High Power Laser and Particle Beams, 2022, 34: 065003. doi: 10.11884/HPLPB202234.210527

电弧射流激励器工作特性仿真研究

doi: 10.11884/HPLPB202234.210527
基金项目: 上海市科学技术委员会资助项目(17DZ2280800)
详细信息
    作者简介:

    袁 野,494050711@qq.com

    通讯作者:

    赵 青,zhaoq@uestc.edu.cn

  • 中图分类号: V224+.4

Numerical study on the characteristics of an arc jet plasma actuator

  • 摘要: 为了在高超声速飞行器减阻中达到更好的减阻效果,设计了一种电弧射流等离子体激励器。采用有限元法求解非线性多物理方程,对此电弧射流等离子体激励器的工作特性进行了数值模拟,得到了激励器内部的电势、压力、温度和速度分布,综合分析了进气口气体速度、放电电流、激励器管道半径对电势、压力、温度和速度分布的影响。获得了全面的影响规律,通过仿真结果还得到:电弧射流等离子体激励器可产生最高温度为8638 K、最高速度为655 m/s的等离子体射流。当电流20 A,进气速度0.5 m/s,管道半径2.5 mm时,所需功率最小;当电流20 A,入口气体流速5 m/s,管道半径2.5 mm时,出口处平均温度最高;当电流20 A,进口气体速度10 m/s,管道半径2.5 mm时,出口处平均速度最大。并对仿真得到的放电电压进行了实验验证,在等离子体参数相似的情况下,实验结果与仿真结果吻合较好。
  • 图  1  电弧射流等离子体激励器结构图

    Figure  1.  Structure diagram of arc jet plasma actuator

    图  2  电流20 A、气体入口速度10 m/s、管道半径2.5 mm时的等离子体特性分布图

    Figure  2.  Plasma characteristic distribution at current 20 A, gas inlet velocity 10 m / s and pipe radius 2.5 mm

    图  3  电流、气体入口速度和管道半径对径向和轴向电位分布的影响

    Figure  3.  Influences of current, gas inlet velocity and pipe radius on radial and axial potential distribution

    图  4  电流、进气速度和管道半径对径向和轴向压力分布的影响

    Figure  4.  Influences of current, inlet velocity and pipe radius on radial and axial pressure distribution

    图  5  电流、进气速度和管道半径对径向和轴向温度分布的影响

    Figure  5.  Influences of current, inlet velocity and pipe radius on radial and axial temperature distribution

    图  6  电流、进气速度和管道半径对径向和轴向速度分布的影响

    Figure  6.  Influences of current, inlet velocity and pipe radius on radial and axial velocity distribution

    图  7  电弧射流等离子体激励器实验拍摄图

    Figure  7.  Experimental photos of arc jet plasma actuator

    图  8  电流20 A、气体入口速度0.5 m/s、管道半径2.5 mm 时的电势分布图

    Figure  8.  Potential distribution at current 20 A, gas inlet velocity 0.5 m / s and pipe radius 2.5 mm

    表  1  电弧射流等离子体激励器的关键性能参数

    Table  1.   Key performance parameters of arc jet plasma actuator

    current/
    A
    inlet gas
    velocity/(m/s)
    pipe radius/
    mm
    internal minimum
    voltage/V
    average temperature
    at the exit/K
    average speed
    at exit/(m/s)
    20 0.5 2.5 −83.7 3035.9 26.8
    20 5.0 2.5 −145.2 3994.3 308.5
    20 10.0 2.5 −176.8 3185.9 424.6
    10 10.0 2.5 −171.7 1963.3 275.4
    15 10.0 2.5 −177.2 2565.7 340.1
    20 10.0 3.0 −168.0 3035.7 281.9
    20 10.0 3.5 −157.8 2982.5 199.9
    下载: 导出CSV

    表  2  实测电流电压特性表

    Table  2.   Measured current and voltage characteristics

    inlet flow/
    (L·min−1)
    preset current
    before discharge/A
    stable discharge
    current/A
    preset voltage
    before discharge/V
    stable discharge
    voltage/V
    572049384
    7721493130
    5820.249386
    58.521.449388
    5921.549386.7
    592049488
    51021.549484
    5112249480
    下载: 导出CSV
  • [1] Dorier J L, Gindrat M, Hollenstein C, et al. Time-resolved imaging of anodic arc root behavior during fluctuations of a DC plasma spraying torch[J]. IEEE Transactions on Plasma Science, 2001, 29(3): 494-501. doi: 10.1109/27.928947
    [2] Ghorui S, Sahasrabudhe S N, Murthy P S S, et al. A dc arc plasma torch as a tailored heat source for thermohydraulic simulation of proton beam–target interaction in ADSS[J]. Plasma Sources Science and Technology, 2006, 15(4): 689-694. doi: 10.1088/0963-0252/15/4/013
    [3] Bhuyan P J, Goswami K S. Two-dimensional and three-dimensional simulation of DC plasma torches[J]. IEEE Transactions on Plasma Science, 2007, 35(6): 1781-1786. doi: 10.1109/TPS.2007.910214
    [4] Kavka T, Matějíček J, Ctibor P, et al. Plasma spraying of copper by hybrid water-gas DC arc plasma torch[J]. Journal of Thermal Spray Technology, 2011, 20(4): 760-774. doi: 10.1007/s11666-011-9633-1
    [5] Zhao Yizhe, Su Yilin, Hou Xuyan, et al. Directional sliding of water: biomimetic snake scale surfaces[J]. Opto-Electronic Advances, 2021, 4: 210008. doi: 10.29026/oea.2021.210008
    [6] Bublievsky A F, Gorbunov A V, Marquesi A R, et al. Generalization of the total current–voltage characteristics for transferred arc plasma torch with steam and air plasmas based on the analytical anisotropic model[J]. IEEE Transactions on Plasma Science, 2015, 43(10): 3707-3715. doi: 10.1109/TPS.2015.2469675
    [7] Mavier F, Rat V, Coudert J F. Influence of time-modulation of applied current on arc stability in DC pulsed plasma spray torch[J]. IEEE Transactions on Plasma Science, 2017, 45(4): 565-573. doi: 10.1109/TPS.2016.2631894
    [8] Ondac P, Maslani A, Hrabovsky M, et al. Measurement of anode arc attachment movement in DC arc plasma torch at atmospheric pressure[J]. Plasma Chemistry and Plasma Processing, 2018, 38(3): 637-654. doi: 10.1007/s11090-018-9888-0
    [9] Sun Qiang, Liu Yonghong, Han Yancong, et al. A novel experimental method of investigating anode-arc-root behaviors in a DC non-transferred arc plasma torch[J]. Plasma Sources Science and Technology, 2020, 29: 025008. doi: 10.1088/1361-6595/ab652e
    [10] Pan Zihan, Ye Lei, Qian Shulou, et al. Comparison of Reynolds average Navier–Stokes turbulence models in numerical simulations of the DC arc plasma torch[J]. Plasma Science and Technology, 2020, 22: 025401. doi: 10.1088/2058-6272/ab4f00
    [11] Huang Heji, Pan Wenxia, Wu Chengkang. Arc root motion in an argon-hydrogen DC plasma torch[J]. IEEE Transactions on Plasma Science, 2008, 36(4): 1050-1051.
    [12] Lebouvier A, Delalondre C, Fresnet F, et al. Three-dimensional unsteady MHD modeling of a low-current high-voltage nontransferred DC plasma torch operating with air[J]. IEEE Transactions on Plasma Science, 2011, 39(9): 1889-1899. doi: 10.1109/TPS.2011.2160208
    [13] Liang Peng, Groll R. Numerical study of plasma–electrode interaction during arc discharge in a DC plasma torch[J]. IEEE Transactions on Plasma Science, 2018, 46(2): 363-372. doi: 10.1109/TPS.2017.2786079
    [14] Xu Xiaowen, Yang Shiyou, Zhou Qiang, et al. A 2-D axisymmetric magneto-hydrodynamic model of a DC arc plasma torch and its solution methodology[J]. IEEE Transactions on Magnetics, 2020, 56: 7503904.
    [15] Sun Jianghong, Sun Surong, Zhang Lihui, et al. Two-temperature chemical non-equilibrium modeling of argon DC arc plasma torch[J]. Plasma Chemistry and Plasma Processing, 2020, 40(6): 1383-1400. doi: 10.1007/s11090-020-10108-9
    [16] Chinè B. A 2D model of a plasma torch[C]//Excerpt from the Proceedings of the 2016 COMSOL Conference in Munich. 2016.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  647
  • HTML全文浏览量:  200
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-26
  • 修回日期:  2022-02-26
  • 录用日期:  2022-03-15
  • 网络出版日期:  2022-03-21
  • 刊出日期:  2022-06-15

目录

    /

    返回文章
    返回