Design of navigation antenna with adjustable beam forming
-
摘要: 提供一种新的调节半功率波束宽度的思路,并设计了一款可实现波束宽度变换以应用于不同波束赋形场景的北斗二号B3频段的导航天线。基于四阵元双馈源的微带贴片天线阵列,在HFSS有限元仿真软件中根据理论进行建模仿真并优化。在保持右旋圆极化的基础上,不用改变阵列的结构,只需适当调节各个阵元激励的幅度与相位,就能实时缩小或者扩大半功率波束宽度,分别实现主瓣方向可调的定向波束赋形与宽波束赋形以应对不同的工作环境,并且具有定向抗干扰能力。仿真结果表明:定向波束赋形与宽波束赋形在B3中心频点的最大增益分别约为7.13,3.56 dBi,半功率波束宽度分别为52°,119°,3 dB轴比宽度分别为90°,166°;在整个B3频段内各个馈电端口反射系数低于−11 dB,相邻端口隔离度低于−28 dB。设计的波束赋形方式可调的导航天线适用于在无遮挡的开阔空间与特定的遮挡环境之间经常切换的工作场景,改善传统的机动式导航终端在“城市峡谷”等高遮蔽角环境下增益较低的缺点。Abstract: A new idea of adjusting half-power beam width is applied to design a navigation antenna of Beidou-2 B3 band, which can realize beam width transformation and apply to different beam forming scenes. The microstrip patch array is modeled in HFSS simulation software. On the basis of keeping the right-handed circular polarization, the half-power beam width can be reduced or expanded without changing the structure of the array, the directional beam forming and wide beam forming with adjustable main lobe direction can be realized to cope with different working environments, and the directional anti-interference ability can be achieved. The simulation results show that the maximum gain of directional beam forming and wide beam forming at B3 center frequency is about 7.13 dBi and 3.56 dBi, the half-power beam width is 52° and 119° respectively, and the axial ratio width in xOz plane is 90° and 166° respectively. In B3 frequency band, the reflection coefficient of each feeding port is under −11 dB, and the isolation degree of adjacent ports is under −28 dB. The designed navigation antenna with adjustable beam forming mode is suitable for working scenes that often switch between open space without shielding and specific shielding environment, and it can improve the low gain of traditional mobile navigation terminal in the environment of high shielding angle such as “Canyon City”.
-
表 1 定向波束赋形时八个馈电点的幅度与相位
Table 1. Amplitude and phase of eight feed points in directional beam forming
feed point amplitude/W phase/(°) 1 0.8 0 2 0.8 −90 3 0.8 0 4 0.8 −90 5 0.8 0 6 0.8 −90 7 0.8 0 8 0.8 −90 表 2 主波瓣偏移时八个馈电点的幅度与相位
Table 2. Amplitude and phase of eight feed points when the main lobe is offset
feed point amplitude/W phase/(°) 1 0.8 60 2 0.8 −30 3 0.8 0 4 0.8 −90 5 0.8 60 6 0.8 −30 7 0.8 0 8 0.8 −90 表 3 宽波束赋形时八个馈电点的幅度与相位
Table 3. Amplitude and phase of eight feed points in wide beamforming
feed point amplitude/W phase/(°) 1 1 0 2 1 −90 3 0.1 180 4 0.1 −45 5 2 0 6 2 −90 7 0.1 −70 8 0.1 40 -
[1] 陈强. 卫星导航接收机的抗干扰天线设计[J]. 无线电工程, 2011, 41(10):33-36. (Chen Qiang. Design on anti-interference antenna for satellite navigation receiver[J]. Radio Engineering, 2011, 41(10): 33-36 doi: 10.3969/j.issn.1003-3106.2011.10.011Chen Qiang. Design on anti-interference antenna for satellite navigation receiver[J]. Radio Engineering, 2011, 41(10): 33-36 doi: 10.3969/j.issn.1003-3106.2011.10.011 [2] 陈钢, 韩日霞, 熊君瑞, 等. 一种新型宽波束圆极化微带天线的设计[J]. 现代电子技术, 2012, 35(19):82-84. (Chen Gang, Han Rixia, Xiong Junrui, et al. Design of novel wide-beam circularly polarized antenna[J]. Modern Electronics Technique, 2012, 35(19): 82-84 doi: 10.3969/j.issn.1004-373X.2012.19.025Chen Gang, Han Rixia, Xiong Junrui, et al. Design of novel wide-beam circularly polarized antenna[J]. Modern Electronics Technique, 2012, 35(19): 82-84 doi: 10.3969/j.issn.1004-373X.2012.19.025 [3] 刘胤廷. 卫星导航天线及自适应抗干扰技术[D]. 北京: 北京邮电大学, 2019Liu Yinting. Satellite navigation antenna and adaptive anti-jamming technology[D]. Beijing: Beijing University of Posts and Telecommunications, 2019 [4] 孙莉, 周力, 欧钢, 等. 小型多馈源宽频微带天线分析与设计[J]. 微波学报, 2007, 23(6):44-47. (Sun Li, Zhou Li, Ou Gang, et al. Analysis and design of a compact multi-feed broadband microstrip antenna[J]. Journal of Microwaves, 2007, 23(6): 44-47 doi: 10.3969/j.issn.1005-6122.2007.06.011Sun Li, Zhou Li, Ou Gang, et al. Analysis and design of a compact multi-feed broadband microstrip antenna[J]. Journal of Microwaves, 2007, 23(6): 44-47 doi: 10.3969/j.issn.1005-6122.2007.06.011 [5] 李洪彬, 丁卫平, 余同彬, 等. 一种波束展宽的宽频带圆极化微带天线的设计与制作[J]. 军事通信技术, 2011, 32(4):71-73,82. (Li Hongbin, Ding Weiping, Yu Tongbin, et al. Design and implement of broadband circularly polarized microstrip antenna with wider beamwidth[J]. Journal of Military Communications Technology, 2011, 32(4): 71-73,82Li Hongbin, Ding Weiping, Yu Tongbin, et al. Design and implement of broadband circularly polarized microstrip antenna with wider beamwidth[J]. Journal of Military Communications Technology, 2011, 32(4): 71-73, 82 [6] Nakano H, Shimada S, Amauchi J, et al. A circularly polarized patch antenna enclosed by a folded conducting wall[C]//Proceedings of 2003 IEEE Topical Conference on Wireless Communication Technology. Honolulu: IEEE, 2003: 134-135. [7] 朱毛毛. 一种调节天线阵列半功率波瓣宽度的方法: CN105958213A[P]. 2016-09-21Zhu Maomao. Method of adjusting half-power lobe width of antenna array: CN105958213A[P]. 2016-09-21 [8] Brahma P, Basu B. Improving the performances of microstrip antenna array using defected ground structure[J]. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2020, 9(3): 1081-1086. doi: 10.35940/ijitee.B7527.019320 [9] 何海丹. 新型宽波束圆极化天线——微带介质天线[J]. 电讯技术, 2003, 43(1):48-50,54. (He Haidan. A novel wide beam circular polarization antenna—microstrip-dielectric antenna[J]. Telecommunication Engineering, 2003, 43(1): 48-50,54 doi: 10.3969/j.issn.1001-893X.2003.01.012He Haidan. A novel wide beam circular polarization antenna——microstrip-dielectric antenna[J]. Telecommunication Engineering, 2003, 43(1): 48-50, 54 doi: 10.3969/j.issn.1001-893X.2003.01.012 [10] 谢苗珍, 陈明. 基于双层介质的宽轴比波束微带天线[J]. 强激光与粒子束, 2017, 29:113003. (Xie Miaozhen, Chen Ming. Wide axial ratio beamwidth microstrip antenna based on bilayer substrates[J]. High Power Laser and Particle Beams, 2017, 29: 113003 doi: 10.11884/HPLPB201729.170097Xie Miaozhen, Chen Ming. Wide axial ratio beamwidth microstrip antenna based on bilayer substrates[J]. High Power Laser and Particle Beams, 2017, 29: 113003 doi: 10.11884/HPLPB201729.170097 [11] 卫雯洁, 蔡敏康, 周后英, 等. 一种宽轴比波束宽度的圆形微带天线的设计[J]. 微波学报, 2018, 34(s1):222-224. (Wei Wenjie, Cai Minkang, Zhou Houying, et al. Simulation of a circularly polarized microstrip antenna with wide axial ratio beamwidth[J]. Journal of Microwaves, 2018, 34(s1): 222-224Wei Wenjie, Cai Minkang, Zhou Houying, et al. Simulation of a circularly polarized microstrip antenna with wide axial ratio beamwidth[J]. Journal of Microwaves, 2018, 34(s1): 222-224 [12] 韩玲, 张志杰. 微带贴片天线的设计与仿真[J]. 科技情报开发与经济, 2006, 16(1):269-271. (Han Ling, Zhang Zhijie. The design and simulation of the microstrip patch antenna[J]. Sci/Tech Information Development & Economy, 2006, 16(1): 269-271Han Ling, Zhang Zhijie. The design and simulation of the microstrip patch antenna[J]. Sci/Tech Information Development & Economy, 2006, 16(1): 269-271 [13] 王红林. 导航抗干扰天线的小型化设计[D]. 西安: 西安电子科技大学, 2018Wang Honglin. Design of miniaturization navigation anti-jamming antenna[D]. Xian: Xidian University, 2018 [14] 宋铮, 张建华, 黄冶. 天线与电波传播[M]. 西安: 西安电子科技大学出版社, 2016Song Zheng, Zhang Jianhua, Huang Zhi. Antennas and radio wave propagation[M]. Xian: Xidian University Press, 2016 [15] 王汇龙, 徐澜飞, 刘运林. 紧凑五-五单元天线阵设计[J]. 电讯技术, 2012, 52(6):952-955. (Wang Huilong, Xu Lanfei, Liu Yunlin. Design of compact five-five elements array[J]. Telecommunication Engineering, 2012, 52(6): 952-955 doi: 10.3969/j.issn.1001-893x.2012.06.024Wang Huilong, Xu Lanfei, Liu Yunlin. Design of compact five-five elements array[J]. Telecommunication Engineering, 2012, 52(6): 952-955 doi: 10.3969/j.issn.1001-893x.2012.06.024