留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紧凑小型脉冲功率源ARC-01/02及其应用

张自成 李典耕 刘世飞 杨汉武 王俞卫 樊玉伟 张建德

张自成, 李典耕, 刘世飞, 等. 紧凑小型脉冲功率源ARC-01/02及其应用[J]. 强激光与粒子束, 2022, 34: 075016. doi: 10.11884/HPLPB202234.210534
引用本文: 张自成, 李典耕, 刘世飞, 等. 紧凑小型脉冲功率源ARC-01/02及其应用[J]. 强激光与粒子束, 2022, 34: 075016. doi: 10.11884/HPLPB202234.210534
Zhang Zicheng, Li Diangeng, Liu Shifei, et al. Compact small-sized pulsed power sources ARC-01/02 and their applications[J]. High Power Laser and Particle Beams, 2022, 34: 075016. doi: 10.11884/HPLPB202234.210534
Citation: Zhang Zicheng, Li Diangeng, Liu Shifei, et al. Compact small-sized pulsed power sources ARC-01/02 and their applications[J]. High Power Laser and Particle Beams, 2022, 34: 075016. doi: 10.11884/HPLPB202234.210534

紧凑小型脉冲功率源ARC-01/02及其应用

doi: 10.11884/HPLPB202234.210534
基金项目: 国家自然科学基金面上项目(51677190);湖南省杰出青年基金项目(2017JJ1005)
详细信息
    作者简介:

    张自成,zczhang@nudt.edu.cn

    通讯作者:

    李典耕,diangengli@163.com

  • 中图分类号: TM214

Compact small-sized pulsed power sources ARC-01/02 and their applications

  • 摘要: 脉冲功率技术的重要发展方向是高功率密度、紧凑小型化和高稳定可靠。液体介质由于具有绝缘强度高、易流动、快恢复、散热性好等方面的特点,广泛应用于脉冲形成线型紧凑小型脉冲功率源的电容储能器件作为储能介质。主要围绕紧凑小型脉冲功率源ARC系列的技术难题,开展了关键技术、系统研发及其工程应用等方面的工作。首先,提出了基于液体介质和慢波结构的形成线,采用场均匀和绝缘配合技术,研制出紧凑小型脉冲功率源ARC-01和ARC-02,输出功率1~2 GW、脉冲宽度5~30 ns、重复频率1~100 Hz,紧凑化水平较国际先进同类装置最多提高了2倍。之后,以凑小型脉冲功率源为核心搭建液体介质击穿测试平台,针对变压器油、蓖麻油、甘油、碳酸丙烯酯等常见液体介质,开展了微秒脉冲击穿特性研究,采用统计分析方法建立了数据库,以“小成本”换取“高可靠性”;并采用超高速光学诊断方法,将击穿瞬间流注、冲击波、亚微观断裂面产生、传播、截止过程与张力理论结合,建立了液体介质击穿物理模型。最后,成功将紧凑小型脉冲功率源应用于驱动宽带/窄带微波产生、碳纤维阴极稳定性及寿命测试。
  • 图  1  液体介质基紧凑重频脉冲功率源电路图

    Figure  1.  Electric circuit of compact repetitive pulsed power source based on liquid dielectric

    图  2  紧凑小型脉冲功率源ARC-01

    Figure  2.  Compact pulsed power source ARC-01

    图  3  紧凑重复频率Tesla变压器型脉冲发生器结构图

    Figure  3.  Structure diagram of compact Tesla transformer pulse generator

    1—PES, 2—Tesla transformer built in a coaxial PFL, 3—main gas switch, 4—transmission line, 5—resistive load, 6—capacitive dividers, 7—oil conservator, 8—oil pipe, 9—gas pipe.

    图  4  紧凑小型脉冲功率源ARC-02

    Figure  4.  Compact pulsed power source ARC-02

    图  5  重复频率100 Hz下ARC-01输出波形

    Figure  5.  Output waveforms of ARC-01 in 100 Hz

    图  6  液体介质脉冲击穿系统示意图

    Figure  6.  Schematic of breakdown setup for liquid dielectric

    图  7  试件结构示意和实物图

    Figure  7.  Schematic and facility of test cell

    1— stainless steel frame, 2—plexiglass cover plate, 3—corrugated insulation board, 4—electrode, 5— connecting rod, 6—sealing ring, 7— fastening flange, 8—fastening screw

    图  8  加压液体介质典型击穿电压波形图

    Figure  8.  Typical breakdown voltage waveform for pressurized liquid dielectric

    图  9  高储能密度液体介质正负极性击穿对比

    Figure  9.  Comparison of negative and positive breakdown for high-energy-storage liquid dielectric

    图  10  纳米改性碳酸丙烯酯流注示意图

    Figure  10.  Streamer schematic diagram of nano-modified propylene carbonate

    图  11  ARC-01驱动产生窄带微波典型波形

    Figure  11.  Narrowband microwave typical waveform by ARC-01

    图  12  100 Hz宽带微波辐射波形

    Figure  12.  Wideband microwave radiation waveform at 100 Hz

    图  13  20 Hz重复频率100个脉冲下电压电流波形

    Figure  13.  Voltage and current waveforms of vacuum diode for compact pulse power source ARC-02 in 20 Hz rep-rate with 100 pulses

    表  1  紧凑脉冲功率源ARC-01/02的输出参数

    Table  1.   Output parameters of compact pulse power source ARC-01/02

    No.pulse power sourcemediumpower/GWpulse width/nsimpedance/Ωrepetition frequency/Hz
    1ARC-01transformer oil1530100
    2ARC-01castor oil1~21020100
    3ARC-02glycerinum13010100
    下载: 导出CSV

    表  2  常见液体介质储能特性参数

    Table  2.   Characteristic parameters of the liquid dielectrics

    liquid dielectricpermittivitybreakdown strength/(kV·cm−1)energy density/(kJ·m−3)
    transformer oil2.2550025
    deionized water806001274
    glycol3712002358
    propylene carbonate656001035
    下载: 导出CSV
  • [1] Bluhm H. 脉冲功率系统的原理与应用[M]. 江伟华, 张弛, 译. 北京: 清华大学出版社, 2008: 1-45

    Bluhm H. Pulsed power systems: principles and applications[M]. Jiang Weihua, Zhang Chi, trans. Beijing: Tsinghua University Press, 2008: 1-45
    [2] 曾正中. 实用脉冲功率技术引论[M]. 西安: 陕西科学技术出版社, 2003: 1-60

    Zeng Zhengzhong. Introduction of practical pulse power technology[M]. Xi'an: Shaanxi Science and Technology Press, 2003: 1-60
    [3] Martin J C, Martin T H, Guenther A H, et al. J. C. Martin on pulsed power[M]. New York: Plenum Press, 1996: 1-35.
    [4] Martin J C. Nanosecond pulse techniques circuit and electromagnetic system design[R]. SSWA/TCM/704/49, 1970.
    [5] Gubanov V P, Korovin S D, Pegel I V, et al. Compact 1000 PPS high-voltage nanosecond pulse generator[J]. IEEE Transactions on Plasma Science, 1997, 25(2): 258-265. doi: 10.1109/27.602497
    [6] Gubanov V P, Gunin A V, Korovin S D, et al. Periodically pulsed high voltage generator based on Tesla transformer and spiral forming line[C]//Proceedings of PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Las Vegas: IEEE, 2001: 336.
    [7] Korovin S D, Gubanov V P, Gunin A V, et al. Repetitive nanosecond high-voltage generator based on spiral forming line[C]//Proceedings of the PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Las Vegas: IEEE, 2001: 1249-1251.
    [8] Mesyats G A, Korovin S D, Gunin A V, et al. Repetitively pulsed high-current accelerators with transformer charging of forming lines[J]. Laser and Particle Beams, 2003, 21(2): 197-209. doi: 10.1017/S0263034603212076
    [9] Kristiansen M, Hatfield L L, Lojewski D. High voltage water breakdown studies[R]. Alexandria: Defense Special Weapons Agency, 1998.
    [10] Mankowski J, Dickens J, Kristiansen M. High voltage subnanosecond breakdown[J]. IEEE Transactions on Plasma Science, 1998, 26(3): 874-881. doi: 10.1109/27.700858
    [11] 杨霄, 杨建华, 钱宝良, 等. 甘油介质在同轴形成线中的击穿特性研究[J]. 强激光与粒子束, 2016, 28:015017. (Yang Xiao, Yang Jianhua, Qian Baoliang, et al. Breakdown characteristics study of glycerol medium in coaxial pulse forming line[J]. High Power Laser and Particle Beams, 2016, 28: 015017 doi: 10.11884/HPLPB201628.015017

    Yang Xiao, Yang Jianhua, Qian Baoliang, et al. Breakdown characteristics study of glycerol medium in coaxial pulse forming line[J]. High Power Laser and Particle Beams, 2016, 28: 015017 doi: 10.11884/HPLPB201628.015017
    [12] Zhang Hua, Zhang Zicheng, Yang Hanwu. Repetitive pulses insulating properties of castor oil in microsecond range[C]//The 13th International Conference on Megagauss Magnetic Field Generation and Related Topics. Suzhou: 2010.
    [13] 徐健, 张自成, 杨汉武, 等. 微秒脉冲下碳酸丙烯酯的击穿特性[J]. 强激光与粒子束, 2014, 26:065005. (Xu Jian, Zhang Zicheng, Yang Hanwu, et al. Breakdown characteristics of propylene carbonate under microsecond pulse[J]. High Power Laser and Particle Beams, 2014, 26: 065005 doi: 10.11884/HPLPB201426.065005

    Xu Jian, Zhang Zicheng, Yang Hanwu, et al. Breakdown characteristics of propylene carbonate under microsecond pulse[J]. High Power Laser and Particle Beams, 2014, 26: 065005 doi: 10.11884/HPLPB201426.065005
    [14] 张自成, 杨汉武, 张建德, 等. 紧凑重频Tesla变压器型调制器的实验研究[J]. 强激光与粒子束, 2008, 20(8):1392-1396. (Zhang Zicheng, Yang Hanwu, Zhang Jiande, et al. Experimental studies on repetitive pulsed power modulator with compact Tesla transformer[J]. High Power Laser and Particle Beams, 2008, 20(8): 1392-1396

    Zhang Zicheng, Yang Hanwu, Zhang Jiande, et al. Experimental studies on repetitive pulsed power modulator with compact Tesla transformer[J]. High Power Laser and Particle Beams, 2008, 20(8): 1392-1396
    [15] Andreev Y A, Gubanov V P, Efremov A M, et al. High-power ultrawideband radiation source[J]. Laser and Particle Beams, 2003, 21(2): 211-217. doi: 10.1017/S0263034603212088
    [16] 张自成, 杨建华, 张建德, 等. 抛光电极表面对加压水介质耐压的影响[J]. 高电压技术, 2005, 31(10):52-54. (Zhang Zicheng, Yang Jianhua, Zhang Jiande, et al. Influence of polished surface of electrodes on high electrical breakdown in pressurized water dielectric[J]. High Voltage Engineering, 2005, 31(10): 52-54 doi: 10.3969/j.issn.1003-6520.2005.10.019

    Zhang Zicheng, Yang Jianhua, Zhang Jiande, et al. Influence of polished surface of electrodes on high electrical breakdown in pressurized water dielectric[J]. High Voltage Engineering, 2005, 31(10): 52-54 doi: 10.3969/j.issn.1003-6520.2005.10.019
    [17] 张自成, 张建德, 杨建华, 等. 加压乙二醇/水混合液耐μs级高电压击穿实验研究[J]. 强激光与粒子束, 2005, 17(8):1201-1204. (Zhang Zicheng, Zhang Jiande, Yang Jianhua, et al. Investigation of high voltage electrical breakdown of pressurized glycol/water mixture with microsecond charging[J]. High Power Laser and Particle Beams, 2005, 17(8): 1201-1204

    Zhang Zicheng, Zhang Jiande, Yang Jianhua, et al. Investigation of high voltage electrical breakdown of pressurized glycol/water mixture with microsecond charging[J]. High Power Laser and Particle Beams, 2005, 17(8): 1201-1204
    [18] Liu Hongwei, Hou Yanpan, Zhang Zicheng, et al. Abnormal polarity effects of streamer discharge in propylene carbonate under microsecond pulses[J]. Chinese Physics Letters, 2017, 34: 077701. doi: 10.1088/0256-307X/34/7/077701
    [19] Lewis T J. A new model for the primary process of electrical breakdown in liquids[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1998, 5(3): 306-315. doi: 10.1109/94.689419
    [20] Hou Yanpan, Liu Zhenxiang, Yang Lijia, et al. Analysis of back electromotive force in RCEML[C]//Proceedings of the 17th International Symposium on Electromagnetic Launch Technology. La Jolla: IEEE, 2014: 1-6.
    [21] Hou Yanpan, Zhang Jiande, Zhang Zicheng. Enhanced dielectric breakdown performances of propylene carbonate modified by nano-particles under microsecond pulses[J]. Journal of Applied Physics, 2016, 119: 244307. doi: 10.1063/1.4954791
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  946
  • HTML全文浏览量:  284
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-29
  • 修回日期:  2022-02-27
  • 网络出版日期:  2022-06-16
  • 刊出日期:  2022-05-12

目录

    /

    返回文章
    返回