留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

瞬发伽马活化成像的数学模型建立与模拟重建

马玉华 李航 杨鑫 李润东 黄洪文

马玉华, 李航, 杨鑫, 等. 瞬发伽马活化成像的数学模型建立与模拟重建[J]. 强激光与粒子束, 2022, 34: 056004. doi: 10.11884/HPLPB202234.210551
引用本文: 马玉华, 李航, 杨鑫, 等. 瞬发伽马活化成像的数学模型建立与模拟重建[J]. 强激光与粒子束, 2022, 34: 056004. doi: 10.11884/HPLPB202234.210551
Ma Yuhua, Li Hang, Yang Xin, et al. Mathematical model establishment, simulation and reconstruction of PGAI[J]. High Power Laser and Particle Beams, 2022, 34: 056004. doi: 10.11884/HPLPB202234.210551
Citation: Ma Yuhua, Li Hang, Yang Xin, et al. Mathematical model establishment, simulation and reconstruction of PGAI[J]. High Power Laser and Particle Beams, 2022, 34: 056004. doi: 10.11884/HPLPB202234.210551

瞬发伽马活化成像的数学模型建立与模拟重建

doi: 10.11884/HPLPB202234.210551
基金项目: 国家自然科学基金联合基金重点项目(U20B2011);国家自然科学基金项目(51978218);四川省科技计划项目(2019ZZDZX0010);国家自然科学基金项目(12075217)
详细信息
    作者简介:

    马玉华,mayuhuaw2016@foxmail.com

    通讯作者:

    杨 鑫,yangx05@126.com

  • 中图分类号: TL99

Mathematical model establishment, simulation and reconstruction of PGAI

  • 摘要: 瞬发伽马活化成像中,样品内部的中子自屏蔽和伽马自吸收效应会使测量结果产生不均匀分布。针对成像单元响应不一致的问题,研究了样品内部中子场不均匀分布和伽马自吸收效应的影响,并进行了理论推导,建立了用于修正成像单元响应和图像重建的数学模型,利用数学模型对Fe,H元素瞬发伽马活化成像的蒙特卡罗模拟进行了元素图像重建。 结果显示,样品内中子场和γ自吸收对成像的影响得到明显改善,Fe和H元素的含量分布使用此模型可以被精确重建,验证了数学模型的有效性。
  • 图  1  实验原理示意图

    Figure  1.  Diagram of experimental principle

    图  2  样品网格单元的位置标号方式

    Figure  2.  Labeling method of the sample grid cell

    图  3  样品各个区域的几何设置

    Figure  3.  Geometric settings of each area in the sample

    图  4  Fe元素瞬发伽马射线计数在样品不同位置的分布图

    Figure  4.  Prompt gamma ray counting distribution of Fe in different positions of the sample

    图  5  H元素瞬发伽马射线计数在样品不同位置的分布图

    Figure  5.  Prompt gamma ray counting distribution of H in different positions of the sample

    图  6  PGAI重建Fe元素的结果

    Figure  6.  PGAI reconstruction result for Fe

    图  7  PGAI重建H元素的结果

    Figure  7.  PGAI reconstruction result for H

  • [1] Kis Z, Szentmiklósi L, Schulze R, et al. Prompt gamma activation imaging (PGAI)[M]//Kardjilov N, Festa G. Neutron Methods for Archaeology and Cultural Heritage. Cham: Springer International Publishing, 2017.
    [2] Canella L, Kudějová P, Schulze R, et al. PGAA, PGAI and NT with cold neutrons: test measurement on a meteorite sample[J]. Applied Radiation and Isotopes, 2009, 67(12): 2070-2074. doi: 10.1016/j.apradiso.2009.05.008
    [3] 杨鑫, 李润东, 王冠博, 等. 瞬发伽马活化分析与中子层析照相联合测量技术[J]. 同位素, 2017, 30(3):153-163. (Yang Xin, Li Rundong, Wang Guanbo, et al. Combination of prompt gamma-ray activation analysis and neutron tomography[J]. Journal of Isotopes, 2017, 30(3): 153-163 doi: 10.7538/tws.2017.youxian.019
    [4] Paul R L, Lindstrom R M. Prompt gamma-ray activation analysis: fundamentals and applications[J]. Journal of Radioanalytical and Nuclear Chemistry, 2000, 243(1): 181-189. doi: 10.1023/A:1006796003933
    [5] Szentmiklósi L, Révay Z, Belgya T, et al. Combining prompt gamma activation analysis and off-line counting[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 278(3): 657-660. doi: 10.1007/s10967-008-1404-1
    [6] Belgya T, Kis Z, Szentmiklósi L, et al. A new PGAI-NT setup at the NIPS facility of the Budapest research reactor[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 278(3): 713-718. doi: 10.1007/s10967-008-1510-0
    [7] Kudejova P, Meierhofer G, Zeitelhack K, et al. The new PGAA and PGAI facility at the research reactor FRM II in Garching near Munich[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 278(3): 691-695. doi: 10.1007/s10967-008-1506-9
    [8] Söllradl S, Mühlbauer M J, Kudejova P, et al. Development and test of a neutron imaging setup at the PGAA instrument at FRM II[J]. Physics Procedia, 2015, 69: 130-137. doi: 10.1016/j.phpro.2015.07.019
    [9] 耿书群, 贾文宝, 黑大千, 等. PGAI瞬发伽玛射线活化成像技术理想化模型的模拟[J]. 强激光与粒子束, 2018, 30:016005. (Geng Shuqun, Jia Wenbao, Hei Daqian, et al. Prompt gamma activation imaging technology under idealized model[J]. High Power Laser and Particle Beams, 2018, 30: 016005 doi: 10.11884/HPLPB201830.170246
    [10] 黄孟, 朱剑钰, 伍钧, 等. 基于JMCT软件的中子活化数值模拟程序的开发和检验[J]. 强激光与粒子束, 2022, 34:026016. (Huang Meng, Zhu Jianyu, Wu Jun, et al. Development and test of neutron activation simulation program based on JMCT software[J]. High Power Laser and Particle Beams, 2022, 34: 026016
    [11] Degenaar I H, Blaauw M, Bode P, et al. Validation of MCNP for large-sample thermal-beam prompt-gamma neutron activation analysis[J]. Journal of Radioanalytical and Nuclear Chemistry, 2004, 260(2): 311-315. doi: 10.1023/B:JRNC.0000027102.53688.54
    [12] Blaauw M, Mackey E A M. Neutron self-shielding in hydrogenous samples[J]. Journal of Radioanalytical and Nuclear Chemistry, 1997, 216(1): 65-68. doi: 10.1007/BF02034497
    [13] Blaauw M, Belgya T. Neutron self-shielding correction for prompt gamma neutron activation analysis of large samples[J]. Journal of Radioanalytical and Nuclear Chemistry, 2005, 265(2): 257-259. doi: 10.1007/s10967-005-0817-3
    [14] 丁大钊, 叶春堂, 赵志祥. 中子物理学: 原理、方法与应用[M]. 北京: 原子能出版社, 2001

    Ding Dazhao, Ye Chuntang, Zhao Zhixiang. Neutron physics[M]. Beijing: Atomic Energy Press, 2001
    [15] 王德人. 非线性方程组解法与最优化方法[M]. 北京: 人民教育出版社, 1979

    Wang Deren. Solutions and optimization methods of nonlinear equations[M]. Beijing: People's Education Press, 1979
  • 加载中
图(7)
计量
  • 文章访问数:  1039
  • HTML全文浏览量:  439
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-08
  • 修回日期:  2022-01-27
  • 录用日期:  2022-02-21
  • 网络出版日期:  2022-02-26
  • 刊出日期:  2022-05-15

目录

    /

    返回文章
    返回