留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Kriging代理模型的铅铋反应堆智能优化方法

李琼 刘紫静 肖豪 肖英杰 赵鹏程 王昌 于涛

李琼, 刘紫静, 肖豪, 等. 基于Kriging代理模型的铅铋反应堆智能优化方法[J]. 强激光与粒子束, 2022, 34: 056007. doi: 10.11884/HPLPB202234.210560
引用本文: 李琼, 刘紫静, 肖豪, 等. 基于Kriging代理模型的铅铋反应堆智能优化方法[J]. 强激光与粒子束, 2022, 34: 056007. doi: 10.11884/HPLPB202234.210560
Li Qiong, Liu Zijing, Xiao Hao, et al. Intelligent optimization method for lead-bismuth reactor based on Kriging surrogate model[J]. High Power Laser and Particle Beams, 2022, 34: 056007. doi: 10.11884/HPLPB202234.210560
Citation: Li Qiong, Liu Zijing, Xiao Hao, et al. Intelligent optimization method for lead-bismuth reactor based on Kriging surrogate model[J]. High Power Laser and Particle Beams, 2022, 34: 056007. doi: 10.11884/HPLPB202234.210560

基于Kriging代理模型的铅铋反应堆智能优化方法

doi: 10.11884/HPLPB202234.210560
基金项目: 国家自然科学基金青年项目(12005097);中央军委装备发展部预研项目(6142A07190106);湖南省自然科学基金青年项目(2020JJ5465);湖南省教育厅优秀青年项目(19B494);湖南省科技创新团队项目(2020RC4053)
详细信息
    作者简介:

    李 琼,liqiong3646@163.com

    通讯作者:

    刘紫静,liuzijing1123@163.com

  • 中图分类号: TL334

Intelligent optimization method for lead-bismuth reactor based on Kriging surrogate model

  • 摘要: 铅铋反应堆广泛应用的需求要求研究人员在现有堆芯方案的基础上开展大量优化设计工作。针对铅铋反应堆多物理、多变量、多约束耦合影响的多维非线性约束优化设计问题,基于Kriging代理模型、正交拉丁超立方抽样和SEUMRE空间搜索技术构建铅铋反应堆智能优化方法,耦合物理蒙卡计算/热工分析程序,开发包含抽样、耦合程序前后处理、反应堆优化分析功能的优化平台,并以铅铋反应堆SPALLER-4,URANUS为原型分别开展最小燃料装载量的方案寻优与参数优化验证。验证结果表明,该智能优化方法用于铅铋反应堆设计方案寻优和堆芯参数优化可行、有效,相比传统蒙卡程序计算寻优,在保证预测精度前提下极大地降低了计算成本,与URANUS初始模型比较,燃料装载量、堆芯总质量、活性区体积、堆芯总体积分别优化10.8%,11.5%,18.1%,17.1%,为基于代理模型的智能优化方法应用于铅铋反应堆的优化设计提供参考。
  • 图  1  堆芯智能优化方法主要技术原理

    Figure  1.  Main technical principle of core intelligent optimization method

    图  2  两种抽样结果比较

    Figure  2.  Comparison of two sampling results

    图  3  SEUMRE空间搜索算法流程框图

    Figure  3.  Flow diagram of SEUMRE spatial search algorithm

    图  4  铅铋反应堆优化设计平台实现流程框图

    Figure  4.  Realization flowchart of DOPPLER

    图  5  SPALLER-4结构简图

    Figure  5.  SPARLER-4 structure diagram

    图  6  URANUS结构简图

    Figure  6.  URANUS structure diagram

    图  7  Kriging代理模型预测Keff、燃耗与蒙卡程序RMC计算值对比图

    Figure  7.  Comparison of Keff, burnup predicted by Kriging surrogate model and RMC calculated value

    图  8  SPALLER-4燃料装载量寻优迭代图

    Figure  8.  Iterative graph of fuel loading optimization for SPALLER-4

    图  9  Kriging代理模型预测Keff、燃耗与蒙卡程序RMC计算值对比图

    Figure  9.  Comparison of Keff, burnup predicted by Kriging surrogate model and RMC calculated value

    图  10  URANUS燃料装载量寻优迭代图

    Figure  10.  Iterative graph of fuel loading optimization for URANUS

    表  1  Kriging代理模型常用相关函数及其表达式

    Table  1.   Commonly used related functions of Kriging surrogate model and their expressions

    correlation functionexpression
    exponential function ${R}_{k}\left({\theta }_{k},{d}_{k}\right)=\exp(-{\theta }_{k}{d}_{k})$
    Gaussian function ${R}_{k}\left({\theta }_{k},{d}_{k}\right)=\exp(-{\theta }_{k}{d}_{k}^{2})$
    linear function $ {R}_{k}\left({\theta }_{k},{d}_{k}\right)=\mathrm{m}\mathrm{a}\mathrm{x}\{\mathrm{0,1}-{\theta }_{k}{d}_{k}\} $
    cubic spline function ${R}_{k}\left({\theta }_{k},{d}_{k}\right)=\left\{\begin{array}{l}1-15{\zeta }_{k}+30{\zeta }_{k}^{3},\quad 0\leqslant {\zeta }_{k}\leqslant 0.2\\ 1.25{(1-15{\zeta }_{k})}^{3},\quad 0.2 < {\zeta }_{k} < 1\\ 0,\quad{\zeta }_{k}\geqslant 1,{\zeta }_{k}={\theta }_{k}{d}_{k}\end{array}\right.$
    下载: 导出CSV

    表  2  SPALLER-4设计参数及其材料与优化变量取值区间

    Table  2.   Materials used for the design parameters of SPALLER-4 and the interval value of optimization variables

    design
    scheme
    thermal
    power/MW
    fuel
    loading/kg
    equivalent
    diameter
    of active
    region/cm
    height of
    active
    area/cm
    average volume
    power density
    of active
    region/(W·cm−3)
    fuel (mass
    fraction
    of Pu)/%
    coolant
    and
    reflector
    shielding
    layer
    SPALLER-44577.8995.4806.99PuN-ThN (31/48)208Pb-Bi(90)B4C(126)
    URANUS1001758097.0218019.18UO2(9.55/17.09)208Pb-Bi(27.11 cm)B4C(15 cm)
    design
    scheme
    solid
    moderator
    (thickness/cm)
    gate
    diameter
    ratio
    fuel rod
    core
    radius/cm
    air gap
    of fuel rod
    (thickness/cm)
    cladding of
    fuel rod
    (thickness/cm)
    upper/lower
    end plug
    of fuel
    rod (height/cm)
    gas cavity/
    spring area
    of fuel rod
    (height/cm)
    top/bottom
    insulation
    of fuel
    rod (height/cm)
    SPALLER-4BeO (3.5)1.200.60He (0.015)TH-9(0.06)TH-9(3/3)He(48/14)He(1/1)
    URANUS1.350.72He (0.010)TH-9(0.06)TH-9(30/30)He(130/30)
    下载: 导出CSV

    表  3  Kriging代理模型预测Keff、燃耗的精度验证结果

    Table  3.   Accuracy verification results of Kriging surrogate model for predicting Keff and burnup

    contrast
    group
    thickness
    of solid
    moderator/cm
    mass fraction
    of Pu in
    fuel/%
    fuel rod
    core
    radius/cm
    height of
    core active
    zone/cm
    grid
    diameter
    ratio
    third-year Keff burnup/(MW·d·kg−1)
    prediction
    by KSM
    calculation
    by RMC
    relative
    error/%
    prediction
    by KSM
    calculation
    by RMC
    relative
    error/%
    1 4.6555 47.2024 0.2911 112.1659 1.3710 1.0502 1.0503 −0.0154 22.9477 22.7960 0.6654
    2 4.8222 45.4101 0.2776 115.2353 1.3773 1.0352 1.0352 0.0006 24.6610 24.4460 0.8794
    3 4.9908 48.9315 0.2608 118.1860 1.4117 1.0325 1.0334 −0.0846 26.8646 26.8940 0.1093
    4 4.5899 48.8228 0.2117 103.6606 1.3534 1.0164 1.0174 −0.0987 46.3528 46.5440 0.4108
    5 4.7828 46.6647 0.2173 116.5918 1.3548 1.0244 1.0234 0.0994 39.1589 39.3960 0.6019
    下载: 导出CSV

    表  4  SPALLER-4堆芯设计方案寻优结果

    Table  4.   Optimization results of SPALLER-4 core design scheme


    thickness
    of solid
    moderator/cm
    mass fraction
    of Pu in
    fuel/%
    fuel rod
    core
    radius/cm
    height of
    core active
    zone/cm
    grid
    diameter
    ratio
    third-year Keff burnup/(MW·d·kg−1)
    prediction
    by KSM
    calculation
    by RMC
    relative
    error/%
    prediction
    by KSM
    calculation
    by RMC
    relative
    error/%
    4.5732 49.8686 0.2003 100.0818 1.3131 1.0057 1.0052 0.0550 53.7021 53.7990 −0.0018
    下载: 导出CSV

    表  5  Kriging代理模型预测Keff、燃耗的精度验证结果

    Table  5.   Accuracy verification results of Kriging surrogate model for predicting Keff and burnup

    contrast
    group
    fuel rod
    core
    radius/cm
    height of
    core active
    zone/cm
    grid diameter
    ratio
    twentieth-year Keff burnup/(MW·d·kg−1)
    prediction
    by KSM
    calculation
    by RMC
    relative
    error/%
    prediction
    by KSM
    calculation
    by RMC
    relative
    error/%
    1 0.7287 164.3119 1.3207 1.0010 1.0018 −0.0809 44.0797 44.4100 −0.7438
    2 0.7373 157.4453 1.3208 1.0004 1.0007 −0.0338 45.2746 45.2710 0.0080
    3 0.7388 156.9933 1.3211 1.0005 1.0009 −0.0409 45.2266 45.2130 0.0301
    4 0.7410 153.9331 1.3205 0.9994 0.9999 −0.0585 43.5830 43.5540 0.0666
    5 0.7374 157.4387 1.3203 1.0006 1.0003 0.0297 45.2645 45.2560 0.0187
    下载: 导出CSV

    表  6  URANUS堆芯设计参数优化结果

    Table  6.   Optimization results of design parameters for URANUS core

    URANUS
    core
    fuel rod
    core
    radius/cm
    height of
    core active
    zone/cm
    grid
    diameter
    ratio
    initial
    Keff
    twentieth-year Keff burnup/(MW·d·kg−1)
    prediction
    by KSM
    calculation
    by RMC
    relative
    error/%
    prediction
    by KSM
    calculation
    by RMC
    relative
    error/%
    initial 0.7200 180.0000 1.3500 1.0289 1.0031 41.5240
    optimization 0.7314 155.5838 1.2893 1.0307 1.0007 1.0010 −0.0229 46.5773 46.5530 0.0523
    下载: 导出CSV
    URANUS
    core
    refueling
    interval/
    EFPY
    fuel
    loading/kg
    total mass
    of core
    (including
    reflector)/kg
    volume of
    the active
    area/m3
    average volume
    power density
    of the active
    area/(W·cm−3)
    total volume
    of core
    (including
    reflector)/m3
    maximum
    temperature
    of fuel
    cladding/K
    maximum
    temperature
    of fuel
    core/K
    initial2017580.0925175459.36335.213819.18008.5734600.6219770.3892
    optimization2015681.0697155309.94964.269723.42087.1059604.1702796.0589
    下载: 导出CSV
  • [1] 王建强, 戴志敏, 徐洪杰. 核能综合利用研究现状与展望[J]. 中国科学院院刊, 2019, 34(4):460-468. (Wang Jianqiang, Dai Zhimin, Xu Hongjie. Research status and prospect of comprehensive utilization of nuclear energy[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(4): 460-468
    [2] 吴宜灿. 铅基反应堆研究进展与应用前景[J]. 现代物理知识, 2018, 30(4):35-39. (Wu Yican. Research progress and application prospects of lead-based reactors[J]. Modern Physics, 2018, 30(4): 35-39
    [3] Zameer A, Mirza S M, Mirza N M. Core loading pattern optimization of a typical two-loop 300 MWe PWR using Simulated Annealing (SA), novel crossover Genetic Algorithms (GA) and hybrid GA(SA) schemes[J]. Annals of Nuclear Energy, 2014, 65: 122-131. doi: 10.1016/j.anucene.2013.10.024
    [4] de Moura Meneses A A, Machado M D, Schirru R. Particle Swarm Optimization applied to the nuclear reload problem of a Pressurized Water Reactor[J]. Progress in Nuclear Energy, 2009, 51(2): 319-326. doi: 10.1016/j.pnucene.2008.07.002
    [5] Khoshahval F, Minuchehr H, Zolfaghari A. Performance evaluation of PSO and GA in PWR core loading pattern optimization[J]. Nuclear Engineering and Design, 2011, 241(3): 799-808. doi: 10.1016/j.nucengdes.2010.12.023
    [6] 王成. 新型优化算法开发及其在核动力装置优化中的应用[D]. 哈尔滨: 哈尔滨工程大学, 2018

    Wang Cheng. The development of new optimization algorithms and applications in optimal design for nuclear power plant[D]. Harbin: Harbin Engineering University, 2018
    [7] 张扬. 多参数非线性系统全局敏感性分析与动态代理模型研究[D]. 长沙: 湖南大学, 2014

    Zhang Yang. The study on global sensitivity analysis and dynamic metamodel of multiple-parameters nonlinear system[D]. Changsha: Hunan University, 2014
    [8] Kempf S, Forget B, Hu Linwen. Kriging-based algorithm for nuclear reactor neutronic design optimization[J]. Nuclear Engineering and Design, 2012, 247: 248-253. doi: 10.1016/j.nucengdes.2012.03.001
    [9] Zeng Kaiyue, Stauff N E, Hou J, et al. Development of multi-objective core optimization framework and application to sodium-cooled fast test reactors[J]. Progress in Nuclear Energy, 2020, 120: 103184. doi: 10.1016/j.pnucene.2019.103184
    [10] Kim K Y, Lee S M. Shape optimization of inlet plenum in a PBMR-type gas-cooled nuclear reactor[J]. Journal of Nuclear Science and Technology, 2009, 46(7): 649-652. doi: 10.1080/18811248.2007.9711571
    [11] 李淞, 杨红义, 周志伟, 等. 基于克里金方法的快堆燃料组件设计[J]. 原子能科学技术, 2018, 52(7):1288-1293. (Li Song, Yang Hongyi, Zhou Zhiwei, et al. Design of fast reactor fuel assembly based on Kriging method[J]. Atomic Energy Science and Technology, 2018, 52(7): 1288-1293 doi: 10.7538/yzk.2017.youxian.0650
    [12] Pebesma E J, Heuvelink G B M. Latin hypercube sampling of Gaussian random fields[J]. Technometrics, 1999, 41(4): 303-312. doi: 10.1080/00401706.1999.10485930
    [13] Jin R, Chen W, Simpson T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13. doi: 10.1007/s00158-001-0160-4
    [14] 毛凤山, 陈昌富, 朱世民. 代理模型方法及其在岩土工程中的应用综述[J]. 地基处理, 2020, 2(4):295-306. (Mao Fengshan, Chen Changfu, Zhu Shimin. Surrogate model method and its application in geotechnical engineering[J]. Journal of Ground Improvement, 2020, 2(4): 295-306
    [15] Younis A, Dong Zuomin. Metamodelling and search using space exploration and unimodal region elimination for design optimization[J]. Engineering Optimization, 2010, 42(6): 517-533. doi: 10.1080/03052150903325540
    [16] Wang Kan, Li Zeguang, She Ding, et al. RMC – A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048
    [17] Zhao Pengcheng, Liu Zijing, Yu Tao, et al. Code development on steady-state thermal-hydraulic for small modular natural circulation lead-based fast reactor[J]. Nuclear Engineering and Technology, 2020, 52(12): 2789-2802. doi: 10.1016/j.net.2020.05.023
    [18] 赵鹏程. 小型自然循环铅冷快堆SNCLFR-100一回路主冷却系统热工安全分析[D]. 合肥: 中国科学技术大学, 2017

    Zhao Pengcheng. Thermal-hydraulic safety analysis of primary cooling system for small modular natural circulation LFR SNCLFR-100[D]. Hefei: University of Science and Technology of China, 2017
    [19] 刘紫静, 赵鹏程, 张斌, 等. 超长寿命小型自然循环铅铋快堆堆芯概念设计研究[J]. 原子能科学技术, 2020, 54(7):1254-1265. (Liu Zijing, Zhao Pengcheng, Zhang Bin, et al. Research on core concept design of ultra-long life small natural circulation lead-based fast reactor[J]. Atomic Energy Science and Technology, 2020, 54(7): 1254-1265 doi: 10.7538/yzk.2019.youxian.0720
    [20] 刘紫静, 赵鹏程, 任广益, 等. 长寿命小型自然循环铅基快堆燃料选型[J]. 原子能科学技术, 2020, 54(5):944-953. (Liu Zijing, Zhao Pengcheng, Ren Guangyi, et al. Fuel selection of long life small natural circulation lead-based fast reactor[J]. Atomic Energy Science and Technology, 2020, 54(5): 944-953 doi: 10.7538/yzk.2019.youxian.0402
    [21] Jooeun Lee. Conceptual neutronic design of inverted core for lead-bismuth cooled small modular reactor[D]. Seoul: Graduate School of Seoul National University, 2017.
    [22] Kwak J, Kim H R. Development of innovative reactor-integrated coolant system design concept for a small modular lead fast reactor[J]. International Journal of Energy Research, 2018, 42(13): 4197-4205. doi: 10.1002/er.4177
    [23] Shin Y H, Choi S, Cho J, et al. Advanced passive design of small modular reactor cooled by heavy liquid metal natural circulation[J]. Progress in Nuclear Energy, 2015, 83: 433-442. doi: 10.1016/j.pnucene.2015.01.002
    [24] Shin Y H, Choi S, Cho J, et al. ICONE23-2135 design status of small modular reactor cooled by lead-bismuth eutectic natural circulation: Uranus[C]//Proceedings of ICONE-23 23rd International Conference on Nuclear Engineering. Chiba, Japan: 2015.
    [25] Driscoll N J, Hejzlar P. Reactor physics challenges in Gen-IV reactor design[J]. Nuclear Engineering and Technology, 2005, 37(1): 1-10.
    [26] Zhang Yan, Wang Chenglong, Lan Zhike, et al. Review of thermal-hydraulic issues and studies of lead-based fast reactors[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109625. doi: 10.1016/j.rser.2019.109625
    [27] Grasso G, Petrovich C, Mattioli D, et al. The core design of ALFRED, a demonstrator for the European lead-cooled reactors[J]. Nuclear Engineering and Design, 2014, 278: 287-301. doi: 10.1016/j.nucengdes.2014.07.032
    [28] Wallenius J, Suvdantsetseg E, Fokau A. ELECTRA: European lead-cooled training reactor[J]. Nuclear Technology, 2012, 177(3): 303-313. doi: 10.13182/NT12-A13477
    [29] 杨红义, 过明亮. 中国实验快堆的设计创新与实现[J]. 原子能科学技术, 2020, 54(S1):199-205. (Yang Hongyi, Guo Mingliang. Design innovation and fulfillment of China experimental fast reactor[J]. Atomic Energy Science and Technology, 2020, 54(S1): 199-205
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  847
  • HTML全文浏览量:  398
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-14
  • 修回日期:  2022-01-14
  • 网络出版日期:  2022-02-14
  • 刊出日期:  2022-05-15

目录

    /

    返回文章
    返回