1.8 mJ high magnification Nd:YAG slab picosecond laser amplifier
-
摘要: 设计了一种高倍率的固体皮秒脉冲激光放大器,采用Nd:YAG板条作为激光增益介质。借助板条结构的角度选通结构,搭建了板条五通放大系统,实现了对注入皮秒脉冲激光的高倍率放大。种子源工作在脉冲模式,放大器泵浦源在连续模式工作。皮秒光纤激光器可以在不同的重复频率下工作,脉冲宽度为13.4 ps。种子光经过隔离和耦合系统之后,注入板条的单脉冲能量为25 nJ。当种子源工作重复频率为24.46 MHz时,板条放大器输出平均功率377 W,单脉冲能量15.5 μJ;当种子源工作重复频率为49.8 kHz时,板条放大器输出平均功率89 W,单脉冲能量1.8 mJ,峰值功率为134 MW,放大倍率达到7.2×104。Abstract: In this study, we design a high-magnification solid-state picosecond pulse laser amplifier in which the gain medium is Nd:YAG slab. We achieve the five-pass amplification of the picosecond pulse laser through the slab multi-angle magnification technology. The seed source works in pulse mode, and the amplifier pump works in continuous mode. Picosecond fiber laser can work at different repetition rates with 13.4 ps pulse duration. After the seed laser passes through the isolation and coupling system, the single-pulse energy injected into the slab is 25 nJ. When repetition frequency of the seed source is 24.46 MHz, the output power is 377 W, the single-pulse energy is 15.5 μJ. When repetition frequency of the seed source is 49.8 kHz, a laser output power of 89 W is obtained with single-pulse energy 1.8 mJ and peak power 134 MW. The magnification is up to 7.2×104.
-
Key words:
- laser /
- picosecond laser /
- solid-state laser /
- high magnification /
- five-pass amplification
-
表 1 不同的传播周期与其对应的选通角
Table 1. Incident angle (θ) for different propagation cycle (N)
N θ/(°) 12 45.9 13 42.1 14 38.5 15 34.4 16 31.2 17 28.2 18 25.4 19 23.6 -
[1] 李欣, 王培源, 邹彤, 等. kHz激光器在武汉卫星观测站的测距实验[J]. 强激光与粒子束, 2011, 23(2):367-370. (Li Xin, Wang Peiyuan, Zou Tong, et al. Experiment on kHz laser ranging at Wuhan satellite laser ranging station[J]. High Power Laser and Particle Beams, 2011, 23(2): 367-370 doi: 10.3788/HPLPB20112302.0367 [2] 邓华荣, 张海峰, 龙明亮, 等. 4kHz重复频率卫星激光测距系统及其应用[J]. 光学学报, 2019, 39:0314002. (Deng Huarong, Zhang Haifeng, Long Mingliang, et al. 4kHz repetition rate satellite laser ranging system and its application[J]. Acta Optica Sinica, 2019, 39: 0314002 doi: 10.3788/AOS201939.0314002 [3] 叶君建, 谢志勇, 黄秀光, 等. 皮秒激光在激光状态方程靶制备中的应用[J]. 强激光与粒子束, 2014, 26:022009. (Ye Junjian, Xie Zhiyong, Huang Xiuguang, et al. Application of picosecond laser processing to target fabrication in equation of state experiments[J]. High Power Laser and Particle Beams, 2014, 26: 022009 doi: 10.3788/HPLPB20142602.22009 [4] 刘洋, 余锦, 张雪, 等. 皮秒激光加工系统设计及实验研究[J]. 中国激光, 2013, 40:s103001. (Liu Yang, Yu Jin, Zhang Xue, et al. Design and experimental study of picosecond laser machining system[J]. Chinese Journal of Lasers, 2013, 40: s103001 doi: 10.3788/CJL201340.0103001 [5] Ma Zhe, Li Daijun, Gao Jiancun, et al. Thermal effects of the diode end-pumped Nd: YVO4 slab[J]. Optics Communications, 2007, 275(1): 179-185. doi: 10.1016/j.optcom.2007.03.024 [6] 雷呈强, 汪岳峰, 侯军燕, 等. 端面抽运复合结构板条介质热效应分析[J]. 应用激光, 2011, 31(2):164-167. (Lei Chengqiang, Wang Yuefeng, Hou Junyan, et al. Thermal effect analysis of LD end-pumped composite slab[J]. Applied Laser, 2011, 31(2): 164-167 doi: 10.3788/AL20113102.0164 [7] Chen Xiaoming, Lu Yanhua, Hu Hao, et al. Narrow-linewidth, quasi-continuous-wave ASE source based on a multiple-pass Nd: YAG zigzag slab amplifier configuration[J]. Optics Express, 2018, 26(5): 5602-5608. doi: 10.1364/OE.26.005602 [8] Kane T J, Eggleston J M, Byer R L. The slab geometry laser—Part II: thermal effects in a finite slab[J]. IEEE Journal of Quantum Electronics, 1985, 21(8): 1195-1210. doi: 10.1109/JQE.1985.1072799 [9] Guo Chuan, Zuo Junwei, Bian Qi, et al. Compact, high-power, high-beam-quality quasi-CW microsecond five-pass zigzag slab 1319 nm amplifier[J]. Applied Optics, 2017, 56(12): 3445-3448. doi: 10.1364/AO.56.003445 [10] Shin J S, Cha Y H, Lim G, et al. Wavefront improvement in an end-pumped high-power Nd: YAG zigzag slab laser[J]. Optics Express, 2017, 25(16): 19309-19319. doi: 10.1364/OE.25.019309 [11] 沈利沣, 姜洪波, 赵志刚, 等. 掠入射Nd: YVO4板条结构皮秒激光放大器的实验研究[J]. 中国激光, 2016, 43:1101004. (Shen Lifeng, Jiang Hongbo, Zhao Zhigang, et al. Experimental study of picosecond laser amplifier based on grazing incidence Nd: YVO4 slab geometry[J]. Chinese Journal of Lasers, 2016, 43: 1101004 doi: 10.3788/CJL201643.1101004 [12] Chen Ying, Liu Ke, Yang Jing, et al. 8.2 mJ, 324 MW, 5 kHz picosecond MOPA system based on Nd: YAG slab amplifiers[J]. Journal of Optics, 2016, 18: 075503. doi: 10.1088/2040-8978/18/7/075503 [13] Chen Wei, Liu Bowen, Song Youjian, et al. High pulse energy fiber/solid-slab hybrid picosecond pulse system for material processing on polycrystalline diamonds[J]. High Power Laser Science and Engineering, 2018, 6: E18. doi: 10.1017/hpl.2018.20 [14] Kuznetsov I, Mukhin I, Palashov O, et al. Thin-rod Yb: YAG amplifiers for high average and peak power lasers[J]. Optics Letters, 2018, 43(16): 3941-3944. doi: 10.1364/OL.43.003941 [15] 董彬, 刘磊, 唐晓军, 等. 100W高功率Nd: YAG皮秒板条激光放大器[J]. 中国激光, 2019, 46:1101004. (Dong Bin, Liu Lei, Tang Xiaojun, et al. 100-W high-power Nd: YAG picosecond laser-slab amplifier[J]. Chinese Journal of Lasers, 2019, 46: 1101004 doi: 10.3788/CJL201946.1101004 [16] Javed F, Zhang Hengli, Li Xiaowen, et al. 165 W, 1 MHz diode-pumped Nd: YAG Innoslab picosecond amplifier[C]//Proceedings of SPIE 11849 Fourth International Symposium on High Power Laser Science and Engineering (HPLSE 2021). 2021: 118490T. [17] 董雪岩, 李平雪, 李舜, 等. 高光束质量高重复频率光纤-固体混合皮秒Innoslab放大器[J]. 中国激光, 2021, 48:1701004. (Dong Xueyan, Li Pingxue, Li Shun, et al. High beam quality fiber-solid hybrid Innoslab picosecond amplifier with high repetition rate[J]. Chinese Journal of Lasers, 2021, 48: 1701004 doi: 10.3788/CJL202148.1701004