留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于BP神经网络的六边形孔阵耦合截面的预测

贺智彬 闫丽萍 赵翔

贺智彬, 闫丽萍, 赵翔. 基于BP神经网络的六边形孔阵耦合截面的预测[J]. 强激光与粒子束, 2022, 34: 053001. doi: 10.11884/HPLPB202234.210566
引用本文: 贺智彬, 闫丽萍, 赵翔. 基于BP神经网络的六边形孔阵耦合截面的预测[J]. 强激光与粒子束, 2022, 34: 053001. doi: 10.11884/HPLPB202234.210566
He Zhibin, Yan Liping, Zhao Xiang. Prediction of coupling cross section of hexagonal aperture array based on BP neural network[J]. High Power Laser and Particle Beams, 2022, 34: 053001. doi: 10.11884/HPLPB202234.210566
Citation: He Zhibin, Yan Liping, Zhao Xiang. Prediction of coupling cross section of hexagonal aperture array based on BP neural network[J]. High Power Laser and Particle Beams, 2022, 34: 053001. doi: 10.11884/HPLPB202234.210566

基于BP神经网络的六边形孔阵耦合截面的预测

doi: 10.11884/HPLPB202234.210566
基金项目: 国家自然科学基金面上项目(61877041)
详细信息
    作者简介:

    贺智彬,hzb2500199128@qq.com

    通讯作者:

    赵 翔,zhaoxiang@scu.edu.cn

  • 中图分类号: TN911

Prediction of coupling cross section of hexagonal aperture array based on BP neural network

  • 摘要: 孔缝耦合截面作为度量电磁能量经孔缝泄漏强弱的重要参数,一直没有一个普适快速且精度较高的获取方法。针对六边形孔阵归一化耦合截面的获取问题,分析了垂直入射条件下各因素对六边形孔阵耦合截面的影响,选择合适的参数并使用全波分析法共获取13820组耦合截面数据。对部分输入参数进行预处理后输入神经网络进行训练,构建了一个以孔单元电尺寸、行/列数、行/列间距电尺寸、孔壁厚度电尺寸、入射波极化角度等7个参数为输入,归一化耦合截面为输出的BP神经网络模型。该模型在预测电尺寸为[0.1,1.2]时的归一化耦合截面平均相对误差为3.8%。选取未出现在神经网络训练集与测试集中的输入参数,比较全波分析法计算值和神经网络预测值共480组数据,其平均相对误差为7.27%。最后通过实验测量,进一步验证了该模型的普适性和有效性。
  • 图  1  数值实验系统模型

    Figure  1.  Numerical experimental system model

    图  2  行列数对孔缝耦合截面的影响

    Figure  2.  Effect of row/column number on the normalized CCS

    图  3  极化角度对孔阵归一化耦合截面的影响

    Figure  3.  Effect of polarization angle on the normalized CCS

    图  4  其他极化角度与0°归一化耦合截面绝对差值

    Figure  4.  Absolute difference of normalized CCS between other polarization angles and 0°

    图  5  电尺寸为0.295时孔阵归一化耦合截面随极化角度和孔间距电尺寸的变化

    Figure  5.  Variation of normalized CCS with α and $ {d}_{x}/\lambda $ while l/λ is 0.295

    图  6  神经网络拟合结果相对误差分布直方图

    Figure  6.  Histogram of relative error distribution of neural network fitting results

    图  7  电尺寸与神经网络拟合结果误差关系图

    Figure  7.  Relation between $ l/\lambda $ and error of neural network fitting result

    图  8  神经网络预测结果相对误差分布直方图

    Figure  8.  Histogram of relative error distribution of neural network prediction results

    图  9  神经网络预测值与真实值比较图

    Figure  9.  Comparison of predicted values of neural network and true values

    图  10  微波暗室实验图

    Figure  10.  Experimental system in anechoic chamber

    图  11  实验测量结果与神经网络预测结果对比

    Figure  11.  Comparison of predicted values of neural network and experimental result

    表  1  输入参数变化范围

    Table  1.   Range of input parameters

    $ \mathit{l}/\mathit{\lambda } $$ {\mathit{n}}_{\mathit{x}} $$ {\mathit{n}}_{\mathit{y}} $$ {\mathit{d}}_{\mathit{x}}/\mathit{\lambda } $$ {\mathit{d}}_{\mathit{y}}/\mathit{\lambda } $$ \mathit{\alpha } $$ \mathit{h}/\mathit{\lambda } $
    0.05~1.201~81~80.025~3.0000.025~3.0000~$ \mathrm{\pi }/2 $0.0005~3.0000
    下载: 导出CSV
  • [1] Cho Y, Son H W, Choi J Y. Transmission resonance through small apertures[C]//2012 International Symposium on Antenna Technology and Applied Electromagnetics. 2012: 1-3.
    [2] Lee S W, Zarrillo G, Law C L. Simple formulas for transmission through periodic metal grids or plates[J]. IEEE Transactions on Antennas and Propagation, 1982, 30(5): 904-909. doi: 10.1109/TAP.1982.1142923
    [3] Martin T, Backstrom M, Loren J. Semi-empirical modeling of apertures for shielding effectiveness simulations[J]. IEEE Transactions on Electromagnetic Compatibility, 2003, 45(2): 229-237. doi: 10.1109/TEMC.2003.810818
    [4] Gunnarsson R, Bäckström M. Transmission cross section for apertures and arrays calculated using time-domain simulations[C]//International Symposium on Electromagnetic Compatibility. 2014: 169-174.
    [5] Hill D A, Ma M T, Ondrejka A R, et al. Aperture excitation of electrically large, lossy cavities[J]. IEEE Transactions on Electromagnetic Compatibility, 1994, 36(3): 169-178. doi: 10.1109/15.305461
    [6] Holloway C L, Hill D A, Sandroni M, et al. Use of reverberation chambers to determine the shielding effectiveness of physically small, electrically large enclosures and cavities[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(4): 770-782. doi: 10.1109/TEMC.2008.2004580
    [7] Levine H, Schwinger J. On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen[J]. Communications on Pure and Applied Mathematics, 1950, 3(4): 355-391. doi: 10.1002/cpa.3160030403
    [8] Huang C, Kodis R D. The measurement of aperture transmission coefficients[R]. Cruft Lab Harvard University, 1953: 165.
    [9] Huang Cha’ang, Kodis R D, Levine H. Diffraction by apertures[J]. Journal of Applied Physics, 1955, 26(2): 151-165. doi: 10.1063/1.1721953
    [10] Koch G F, Kolbig K S. The transmission coefficient of elliptical and rectangular apertures for electromagnetic waves[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(1): 78-83. doi: 10.1109/TAP.1968.1139108
    [11] Rahmat-Samii Y, Mittra R. Electromagnetic coupling through small apertures in a conducting screen[J]. IEEE Transactions on Antennas and Propagation, 1977, 25(2): 180-187. doi: 10.1109/TAP.1977.1141554
    [12] Davis J G, Shakespeare P, Kiley N. Evaluation of circular aperture transmission coefficients in the presence of obscurations[C]//IET 8th International Conference on Computation in Electromagnetics (CEM 2011). 2011: 1-2.
    [13] 祝磊, 刘强, 赵翔, 等. 基于BP神经网络的圆形孔缝耦合截面预测[J]. 强激光与粒子束, 2019, 31:033201. (Zhu Lei, Liu Qiang, Zhao Xiang, et al. Prediction of coupling section of circular aperture based on BP neural network[J]. High Power Laser and Particle Beams, 2019, 31: 033201 doi: 10.11884/HPLPB201931.190011
    [14] 丁星丽, 赵翔, 闫丽萍, 等. 基于神经网络的圆孔阵列垂直入射耦合截面预测[J]. 无线电工程, 2020, 50(5):383-389. (Ding Xingli, Zhao Xiang, Yan Liping, et al. Prediction of vertical incident coupling cross section of circular aperture array based on neural network[J]. Radio Engineering, 2020, 50(5): 383-389 doi: 10.3969/j.issn.1003-3106.2020.05.009
    [15] Paoletti U, Suga T, Osaka H. Average transmission cross section of aperture arrays in electrically large complex enclosures[C]//2012 Asia-Pacific Symposium on Electromagnetic Compatibility. 2012: 677-680.
    [16] Olyslager F, Laermans E, De Zutter D, et al. Numerical and experimental study of the shielding effectiveness of a metallic enclosure[J]. IEEE Transactions on Electromagnetic Compatibility, 1999, 41(3): 202-213. doi: 10.1109/15.784155
    [17] 李锐. 微波脉冲与带孔阵腔体、带介质窗口腔体耦合的研究[D]. 长沙: 国防科学技术大学, 2007

    Li Rui. Study on the coupling of microwave pulses into the cavity with aperture arrays and the cavity with a dielectric slot[D]. Changsha: National University of Defense Technology, 2007
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  784
  • HTML全文浏览量:  241
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 修回日期:  2022-03-17
  • 录用日期:  2022-03-18
  • 网络出版日期:  2022-03-23
  • 刊出日期:  2022-05-15

目录

    /

    返回文章
    返回