留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光导半导体的MHz高重频可调谐脉冲产生技术研究

楚旭 王朗宁 朱效庆 王日品 王彬 荀涛 刘金亮

楚旭, 王朗宁, 朱效庆, 等. 基于光导半导体的MHz高重频可调谐脉冲产生技术研究[J]. 强激光与粒子束, 2022, 34: 075006. doi: 10.11884/HPLPB202234.210569
引用本文: 楚旭, 王朗宁, 朱效庆, 等. 基于光导半导体的MHz高重频可调谐脉冲产生技术研究[J]. 强激光与粒子束, 2022, 34: 075006. doi: 10.11884/HPLPB202234.210569
Chu Xu, Wang Langning, Zhu Xiaoqing, et al. Research on tunable pulse generation with MHz repetition rate based on compensated 4H-SiC photoconductive semiconductor[J]. High Power Laser and Particle Beams, 2022, 34: 075006. doi: 10.11884/HPLPB202234.210569
Citation: Chu Xu, Wang Langning, Zhu Xiaoqing, et al. Research on tunable pulse generation with MHz repetition rate based on compensated 4H-SiC photoconductive semiconductor[J]. High Power Laser and Particle Beams, 2022, 34: 075006. doi: 10.11884/HPLPB202234.210569

基于光导半导体的MHz高重频可调谐脉冲产生技术研究

doi: 10.11884/HPLPB202234.210569
基金项目: 国家自然科学基金项目(62071477,62101577);湖南省自然科学基金项目(2021JJ40660)
详细信息
    作者简介:

    楚 旭,15580957460@163.com

    通讯作者:

    荀 涛,xtao_0301@hotmail.com

    刘金亮,llle333@163.com

  • 中图分类号: TN78

Research on tunable pulse generation with MHz repetition rate based on compensated 4H-SiC photoconductive semiconductor

  • 摘要: 随着微波光子学的发展,新型光导微波技术利用高重频脉冲簇激光,入射到线性光导半导体器件中产生可调谐高功率电磁脉冲的方式受到广泛关注。SiC光导半导体开关(PCSS)具有高击穿场强,高饱和载流子速率,高抗辐射能力,高热传导率和高温工作稳定性等优点,是产生高重频、高功率、超短脉冲的重要固态电子器件。介绍了一种基于钒补偿半绝缘4H-SiC PCSS的MHz重复频率亚纳秒脉冲发生器。该发生器采用1 MHz,1030 nm可调谐光脉冲宽度的激光簇驱动源,4H-SiC PCSS的厚度为0.8 mm。整系统可得到最大输出电功率176 kW、最小半高宽约为365 ps的MHz重频短脉冲。
  • 图  1  4H-SiC光导半导体器件封装结构与CVR高频响应电流图

    Figure  1.  Insulated package structure of VCSI 4H-SiC PCSS device and circuit diagram of CVR high frequency response circuit

    图  2  光导开关器件电参数等效示意图

    Figure  2.  Circuit structure of VCSI4H-SiC PCSS

    图  3  4H-SiC光导器件光生载流子分布仿真(d=0.8 mm)

    Figure  3.  Photocurrent density simulation of 4H-SiC PCSS (d=0.8 mm)

    图  4  1 MHz超高重频光电流输出波形图

    Figure  4.  Output current of 4H-SiC PCSS at 1 MHz ultra-high re-frequency

    图  5  单脉冲响应波形图

    Figure  5.  Single photocurrent waveforms

    图  6  500 ps连续光脉冲波形与电路响应波形

    Figure  6.  Waveform of continuous laser pulse and output photocurrent for 500 ps laser triggering

    图  7  输出光电流与不同偏置电压/脉冲激光功率的关系

    Figure  7.  Output photocurrent varying with bias voltage and pulse laser power

  • [1] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 3rd ed. Boca Raton: CRC Press, 2016.
    [2] 袁建强, 谢卫平, 周良骥, 等. 光导开关研究进展及其在脉冲功率技术中的应用[J]. 强激光与粒子束, 2008, 20(1):171-176. (Yuan Jianqiang, Xie Weiping, Zhou Liangji, et al. Developments and applications of photoconductive semiconductor switches in pulsed power technology[J]. High Power Laser and Particle Beams, 2008, 20(1): 171-176

    Yuan Jianqiang, Xie Weiping, Zhou Liangji, et al. Developments and applications of photoconductive semiconductor switches in pulsed power technology[J]. High Power Laser and Particle Beams, 2008, 20(1): 171-176
    [3] 肖龙飞, 徐现刚. 宽禁带碳化硅单晶衬底及器件研究进展[J]. 强激光与粒子束, 2019, 31:040003. (Xiao Longfei, Xu Xiangang. Recent development of wide bandgap semiconductor SiC substrates and device[J]. High Power Laser and Particle Beams, 2019, 31: 040003 doi: 10.11884/HPLPB201931.190043

    Xiao Longfei, Xu Xiangang. Recent development of wide bandgap semiconductor SiC substrates and device[J]. High Power Laser and Particle Beams, 2019, 31: 040003 doi: 10.11884/HPLPB201931.190043
    [4] 罗燕, 丁蕾, 赵毅, 等. SiC光导开关衬底与电极界面场强仿真与优化设计[J]. 强激光与粒子束, 2022, 34:063004. (Luo Yan, Ding Lei, Zhao Yi, et al. Optimization design and simulation of electric field at interface between substrate and electrode of photoconductive switch[J]. High Power Laser and Particle Beams, 2022, 34: 063004

    Luo Yan, Ding Lei, Zhao Yi, et al. Optimization design and simulation of electric field at interface between substrate and electrode of photoconductive switch[J]. High Power Laser and Particle Beams, 2022, 34: 063004
    [5] Sullivan J S. Wide bandgap extrinsic photoconductive switches[R]. Livermore: Lawrence Livermore National Lab. , 2013.
    [6] Wu Qilin, Xun Tao, Zhao Yuxin, et al. The test of a high-power, semi-insulating, linear-mode, vertical 6H-SiC PCSS[J]. IEEE Transactions on Electron Devices, 2019, 66(4): 1837-1842. doi: 10.1109/TED.2019.2901065
    [7] Wu Qilin, Zhao Yuxin, Xun Tao, et al. Initial test of optoelectronic high power microwave generation from 6H-SiC photoconductive switch[J]. IEEE Electron Device Letters, 2019, 40(7): 1167-1170. doi: 10.1109/LED.2019.2918954
    [8] 王朗宁, 荀涛, 杨汉武. 正对电极结构碳化硅光导开关的电路模型[J]. 强激光与粒子束, 2013, 25(9):2471-2476. (Wang Langning, Xun Tao, Yang Hanwu. Circuit modeling of vertical geometry SiC photoconductive semiconductor switches[J]. High Power Laser and Particle Beams, 2013, 25(9): 2471-2476 doi: 10.3788/HPLPB20132509.2471

    Wang Langning, Xun Tao, Yang Hanwu. Circuit modeling of vertical geometry SiC photoconductive semiconductor switches[J]. High Power Laser and Particle Beams, 2013, 25(9): 2471-2476 doi: 10.3788/HPLPB20132509.2471
    [9] Hu Long, Su Jiancang, Qiu Ruicheng, et al. Ultra-wideband microwave generation using a low-energy-triggered bulk gallium arsenide avalanche semiconductor switch with ultrafast switching[J]. IEEE Transactions on Electron Devices, 2018, 65(4): 1308-1313. doi: 10.1109/TED.2018.2802642
    [10] Wei Wei, Xia Liansheng, Chen Yi, et al. Research on synchronization of 15 parallel high gain photoconductive semiconductor switches triggered by high power pulse laser diodes[J]. Applied Physics Letters, 2015, 106: 022108. doi: 10.1063/1.4906035
    [11] Xiao Longfei, Yang Xianglong, Duan Peng, et al. Effect of electron avalanche breakdown on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption[J]. Applied Optics, 2018, 57(11): 2804-2808. doi: 10.1364/AO.57.002804
    [12] Chu Xu, Xun Tao, Wang Langning, et al. Breakdown behavior of GaAs PCSS with a backside-light-triggered coplanar electrode structure[J]. Electronics, 2021, 10: 357. doi: 10.3390/electronics10030357
    [13] Wang Langning, Jia Yongsheng, Liu Jinliang. Photoconductive semiconductor switch-based triggering with 1 ns jitter for trigatron[J]. Matter and Radiation at Extremes, 2018, 3(5): 256-260. doi: 10.1016/j.mre.2017.12.006
    [14] Wang Langning, Chu Xu, Wu Qilin, et al. Effects of high-field velocity saturation on the performance of V-doped 6H silicon-carbide photoconductive switches[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4879-4886. doi: 10.1109/JESTPE.2020.3038561
    [15] He Xuan, Zhang Bin, Liu Shuailin, et al. High-power linear-polarization burst-mode all-fibre laser and generation of frequency-adjustable microwave signal[J]. High Power Laser Science and Engineering, 2021, 9: e13. doi: 10.1017/hpl.2021.11
  • 加载中
图(8)
计量
  • 文章访问数:  1057
  • HTML全文浏览量:  296
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-21
  • 修回日期:  2022-05-18
  • 网络出版日期:  2022-06-15
  • 刊出日期:  2022-05-12

目录

    /

    返回文章
    返回