[1] |
Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 3rd ed. Boca Raton: CRC Press, 2016.
|
[2] |
袁建强, 谢卫平, 周良骥, 等. 光导开关研究进展及其在脉冲功率技术中的应用[J]. 强激光与粒子束, 2008, 20(1):171-176. (Yuan Jianqiang, Xie Weiping, Zhou Liangji, et al. Developments and applications of photoconductive semiconductor switches in pulsed power technology[J]. High Power Laser and Particle Beams, 2008, 20(1): 171-176Yuan Jianqiang, Xie Weiping, Zhou Liangji, et al. Developments and applications of photoconductive semiconductor switches in pulsed power technology[J]. High Power Laser and Particle Beams, 2008, 20(1): 171-176
|
[3] |
肖龙飞, 徐现刚. 宽禁带碳化硅单晶衬底及器件研究进展[J]. 强激光与粒子束, 2019, 31:040003. (Xiao Longfei, Xu Xiangang. Recent development of wide bandgap semiconductor SiC substrates and device[J]. High Power Laser and Particle Beams, 2019, 31: 040003 doi: 10.11884/HPLPB201931.190043Xiao Longfei, Xu Xiangang. Recent development of wide bandgap semiconductor SiC substrates and device[J]. High Power Laser and Particle Beams, 2019, 31: 040003 doi: 10.11884/HPLPB201931.190043
|
[4] |
罗燕, 丁蕾, 赵毅, 等. SiC光导开关衬底与电极界面场强仿真与优化设计[J]. 强激光与粒子束, 2022, 34:063004. (Luo Yan, Ding Lei, Zhao Yi, et al. Optimization design and simulation of electric field at interface between substrate and electrode of photoconductive switch[J]. High Power Laser and Particle Beams, 2022, 34: 063004Luo Yan, Ding Lei, Zhao Yi, et al. Optimization design and simulation of electric field at interface between substrate and electrode of photoconductive switch[J]. High Power Laser and Particle Beams, 2022, 34: 063004
|
[5] |
Sullivan J S. Wide bandgap extrinsic photoconductive switches[R]. Livermore: Lawrence Livermore National Lab. , 2013.
|
[6] |
Wu Qilin, Xun Tao, Zhao Yuxin, et al. The test of a high-power, semi-insulating, linear-mode, vertical 6H-SiC PCSS[J]. IEEE Transactions on Electron Devices, 2019, 66(4): 1837-1842. doi: 10.1109/TED.2019.2901065
|
[7] |
Wu Qilin, Zhao Yuxin, Xun Tao, et al. Initial test of optoelectronic high power microwave generation from 6H-SiC photoconductive switch[J]. IEEE Electron Device Letters, 2019, 40(7): 1167-1170. doi: 10.1109/LED.2019.2918954
|
[8] |
王朗宁, 荀涛, 杨汉武. 正对电极结构碳化硅光导开关的电路模型[J]. 强激光与粒子束, 2013, 25(9):2471-2476. (Wang Langning, Xun Tao, Yang Hanwu. Circuit modeling of vertical geometry SiC photoconductive semiconductor switches[J]. High Power Laser and Particle Beams, 2013, 25(9): 2471-2476 doi: 10.3788/HPLPB20132509.2471Wang Langning, Xun Tao, Yang Hanwu. Circuit modeling of vertical geometry SiC photoconductive semiconductor switches[J]. High Power Laser and Particle Beams, 2013, 25(9): 2471-2476 doi: 10.3788/HPLPB20132509.2471
|
[9] |
Hu Long, Su Jiancang, Qiu Ruicheng, et al. Ultra-wideband microwave generation using a low-energy-triggered bulk gallium arsenide avalanche semiconductor switch with ultrafast switching[J]. IEEE Transactions on Electron Devices, 2018, 65(4): 1308-1313. doi: 10.1109/TED.2018.2802642
|
[10] |
Wei Wei, Xia Liansheng, Chen Yi, et al. Research on synchronization of 15 parallel high gain photoconductive semiconductor switches triggered by high power pulse laser diodes[J]. Applied Physics Letters, 2015, 106: 022108. doi: 10.1063/1.4906035
|
[11] |
Xiao Longfei, Yang Xianglong, Duan Peng, et al. Effect of electron avalanche breakdown on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption[J]. Applied Optics, 2018, 57(11): 2804-2808. doi: 10.1364/AO.57.002804
|
[12] |
Chu Xu, Xun Tao, Wang Langning, et al. Breakdown behavior of GaAs PCSS with a backside-light-triggered coplanar electrode structure[J]. Electronics, 2021, 10: 357. doi: 10.3390/electronics10030357
|
[13] |
Wang Langning, Jia Yongsheng, Liu Jinliang. Photoconductive semiconductor switch-based triggering with 1 ns jitter for trigatron[J]. Matter and Radiation at Extremes, 2018, 3(5): 256-260. doi: 10.1016/j.mre.2017.12.006
|
[14] |
Wang Langning, Chu Xu, Wu Qilin, et al. Effects of high-field velocity saturation on the performance of V-doped 6H silicon-carbide photoconductive switches[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4879-4886. doi: 10.1109/JESTPE.2020.3038561
|
[15] |
He Xuan, Zhang Bin, Liu Shuailin, et al. High-power linear-polarization burst-mode all-fibre laser and generation of frequency-adjustable microwave signal[J]. High Power Laser Science and Engineering, 2021, 9: e13. doi: 10.1017/hpl.2021.11
|