留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阵列式等离子体射流处理芽孢的实验研究

陈竑钰 张勇 刘振 闫克平

陈竑钰, 张勇, 刘振, 等. 阵列式等离子体射流处理芽孢的实验研究[J]. 强激光与粒子束, 2022, 34: 099001. doi: 10.11884/HPLPB202234.220003
引用本文: 陈竑钰, 张勇, 刘振, 等. 阵列式等离子体射流处理芽孢的实验研究[J]. 强激光与粒子束, 2022, 34: 099001. doi: 10.11884/HPLPB202234.220003
Chen Hongyu, Zhang Yong, Liu Zhen, et al. Experimental study on spores treatment by array plasma jet[J]. High Power Laser and Particle Beams, 2022, 34: 099001. doi: 10.11884/HPLPB202234.220003
Citation: Chen Hongyu, Zhang Yong, Liu Zhen, et al. Experimental study on spores treatment by array plasma jet[J]. High Power Laser and Particle Beams, 2022, 34: 099001. doi: 10.11884/HPLPB202234.220003

阵列式等离子体射流处理芽孢的实验研究

doi: 10.11884/HPLPB202234.220003
详细信息
    作者简介:

    陈竑钰,hongyuch@zju.edu.cn

    通讯作者:

    刘 振,zliu@zju.edu.cn

  • 中图分类号: 187.3R187.4

Experimental study on spores treatment by array plasma jet

  • 摘要: 研制了一套单极性微秒脉冲阵列式等离子体射流系统,该系统可在大气压下激发产生等离子体射流,实现大面积的灭菌处理。该系统可产生峰值电压20 kV、频率15 kHz的高压脉冲,激发产生的射流均匀稳定,覆盖面积达37.7 cm2,射流长度达6 cm,射流功率为40.05 W,处理5 min可使射流覆盖范围内的枯草芽孢杆菌的芽孢基本全部失去活性。考察了不同参数对灭菌效率的影响,结果表明,灭菌率与工作电压、脉冲频率、处理时间呈正相关,在氦气氛围下有较好的灭菌效果。SEM显示等离子体射流能够对枯草芽孢杆菌的芽孢外壳结构造成损坏,导致芽孢无法正常代谢,最终死亡。
  • 图  1  等离子体消杀流程图

    Figure  1.  Flowchart of plasma disinfection

    图  2  9×9阵列式等离子体发生器

    Figure  2.  9×9 array plasma generator

    图  3  射流通道的分布及尺寸

    Figure  3.  Distribution and size of jet channels

    图  4  枯草杆菌芽孢悬液

    Figure  4.  Spore suspension of Bacillus subtilis

    图  5  等离子体射流处理琼脂平板上的芽孢

    Figure  5.  Spores on AGAR plate was treated by plasma jet

    图  6  脉冲等离子体射流的电压及电流波形(a)和单次脉冲能量(b)

    Figure  6.  Voltage and current waveform (a) and single pulse energy (b) of pulsed plasma jet

    图  7  不同气体成分下等离子体射流的发射光谱

    Figure  7.  Emission spectra of plasma jets with different gas compositions

    图  8  阵列式射流放电

    Figure  8.  Array jet discharge

    图  9  不同工作电压下射流的灭菌效果

    Figure  9.  Sterilizing effect of jet under different voltage

    图  10  不同脉冲频率下射流的灭菌效果

    Figure  10.  Sterilizing effect of jet at different pulse frequencies

    图  11  不同处理时间下射流的灭菌效果

    Figure  11.  Sterilizing effect of jet under different treatment time

    图  12  不同气体氛围下射流的灭菌效果

    Figure  12.  Sterilization effect of jet under different gas atmosphere

    图  13  不同气体氛围下射流的灭菌实验数据

    Figure  13.  Sterilization data of jet under different gas atmosphere

    图  14  处理前后枯草杆菌芽孢的SEM

    Figure  14.  SEM images of Bacillus subtilis spores before and after treatment

  • [1] 郑超. 低温等离子体和脉冲电场灭菌技术[D]. 杭州: 浙江大学, 2013

    Zheng Chao. Non-thermal plasma and pulsed electric field induced disinfection[D]. Hangzhou: Zhejiang University, 2013
    [2] 郑超, 徐羽贞, 黄逸凡, 等. 低温等离子体灭菌及生物医药技术研究进展[J]. 化工进展, 2013, 32(9):2185-2193. (Zheng Chao, Xu Yuzhen, Huang Yifan, et al. State-of-the-art non-thermal plasma disinfection and medicine[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 2185-2193

    Zheng Chao, Xu Yuzhen, Huang Yifan, et al. State-of-the-art non-thermal plasma disinfection and medicine[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 2185-2193
    [3] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3):685-705. (Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705

    Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705
    [4] Hosseini S M, Rostami S, Samani B H, et al. The effect of atmospheric pressure cold plasma on the inactivation of Escherichia coli in sour cherry juice and its qualitative properties[J]. Food Science & Nutrition, 2020, 8(2): 870-883.
    [5] Ulbin-Figlewicz N, Jarmoluk A, Marycz K. Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota[J]. Annals of Microbiology, 2015, 65(3): 1537-1546. doi: 10.1007/s13213-014-0992-y
    [6] Fiebrandt M, Hillebrand B, Lackmann J W, et al. Inactivation of B. subtilis spores by low pressure plasma-influence of optical filters and photon/particle fluxes on the inactivation efficiency[J]. Journal of Physics D:Applied Physics, 2018, 51: 045401. doi: 10.1088/1361-6463/aa9f0a
    [7] Huang Y H, Ye X P, Doona C J, et al. An investigation of inactivation mechanisms of Bacillus amyloliquefaciens spores in non-thermal plasma of ambient air[J]. Journal of the Science of Food and Agriculture, 2019, 99(1): 368-378. doi: 10.1002/jsfa.9198
    [8] Wang S W, Doona C J, Setlow P, et al. Use of Raman spectroscopy and phase-contrast microscopy to characterize cold atmospheric plasma inactivation of individual bacterial spores[J]. Applied and Environmental Microbiology, 2016, 82(19): 5775-5784. doi: 10.1128/AEM.01669-16
    [9] Rossi F, Kylián O, Hasiwa M. Decontamination of surfaces by low pressure plasma discharges[J]. Plasma Processes and Polymers, 2006, 3(6/7): 431-442.
    [10] Whittaker A G, Graham E M, Baxter R L, et al. Plasma cleaning of dental instruments[J]. The Journal of Hospital Infection, 2004, 56(1): 37-41. doi: 10.1016/j.jhin.2003.09.019
    [11] 成军虎, 张彦, 韩忠. 低温等离子体技术灭活细菌芽孢的研究进展[J]. 现代食品科技, 2021, 37(4):302-310. (Cheng Junhu, Zhang Yan, Han Zhong. Research progress on inactivation of bacterial spores by cold plasma technology[J]. Modern Food Science and Technology, 2021, 37(4): 302-310

    Cheng Junhu, Zhang Yan, Han Zhong. Research progress on inactivation of bacterial spores by cold plasma technology[J]. Modern Food Science and Technology, 2021, 37(4): 302-310
    [12] Kalghatgi S, Kelly C M, Cerchar E, et al. Effects of non-thermal plasma on mammalian cells[J]. PLoS One, 2011, 6: e16270. doi: 10.1371/journal.pone.0016270
    [13] Graves D B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology[J]. Journal of Physics D: Applied Physics, 2012, 45: 263001. doi: 10.1088/0022-3727/45/26/263001
    [14] 卢新培. 等离子体射流及其医学应用[J]. 高电压技术, 2011, 37(6):1416-1425. (Lu Xinpei. Plasma jets and their biomedical application[J]. High Voltage Engineering, 2011, 37(6): 1416-1425

    Lu Xinpei. Plasma jets and their biomedical application[J]. High Voltage Engineering, 2011, 37(6): 1416-1425
    [15] 李和平, 于达仁, 孙文廷, 等. 大气压放电等离子体研究进展综述[J]. 高电压技术, 2016, 42(12):3697-3727. (Li Heping, Yu Daren, Sun Wenting, et al. State-of-the-art of atmospheric discharge plasmas[J]. High Voltage Engineering, 2016, 42(12): 3697-3727

    Li Heping, Yu Daren, Sun Wenting, et al. State-of-the-art of atmospheric discharge plasmas[J]. High Voltage Engineering, 2016, 42(12): 3697-3727
  • 加载中
图(14)
计量
  • 文章访问数:  795
  • HTML全文浏览量:  378
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-04
  • 修回日期:  2022-04-08
  • 录用日期:  2022-04-11
  • 网络出版日期:  2022-04-18
  • 刊出日期:  2022-06-17

目录

    /

    返回文章
    返回