Enhancement of underwater shock waves generated by exploding-wire-initiated reactions of aluminum powder suspension
-
摘要: 开展了水中铜丝电爆炸引燃铝粉悬浮液的实验研究,将铝粉悬浮液置于有机玻璃管中,同轴心方向穿过200 μm的金属铜丝,经脉冲功率驱动后快速相变发生电爆炸为铝粉爆燃提供反应条件。通过比对不同质量球状铝粉(μm粒径)的悬浮液在相同脉冲电容器储能条件下的放电和冲击波参数,获得了电爆炸驱动铝粉放电特性和冲击波增强效应的规律。实验发现,电爆炸起爆铝粉的冲击波有两个明显的波峰,分别对应于金属丝电爆炸(一次冲击波)和由产物气体胀裂管壁产生的二次冲击波,且铝粉爆燃对二次冲击波的增强效应非常显著,在300 mg铝粉的悬浮液环境中,二次冲击波峰值达到2.77 MPa,是无铝粉添加环境中二次冲击波的2.25倍,冲击波冲量增强了约50%。对不同储能条件下200 mg铝粉的悬浮液环境中金属丝爆的冲击波进行了对比研究,发现随着驱动源储能的增加,电爆炸引发的主冲击波和二次冲击波压力均逐渐增大,600 J时分别达到了3.17和1.91 MPa,冲击波冲量也随储能增加而增加,在600 J储能条件时的冲量为41.12 Pa·s,储能条件约300 J时20.24 Pa·s冲量的2倍。Abstract: Underwater electrical wire explosion igniting energetic materials can generate stronger shock waves (SW), which is also considered as an important direction for the development of controllable shock wave technology. Compared with other energetic materials, the liquid-phase aluminum powder suspension has more advantages in terms of safety and uniformity that is easy to obtain and has a high reaction heat. It has great potential for civil applications. This paper reports an experimental study on the detonation of aluminum powder suspension by underwater electrical wire explosion. The aluminum powder suspension was confined in a plexiglass tube and passed through a 200 μm metal copper wire in the coaxial direction. After being driven by a high-voltage pulse source, it rapidly phased transformation and explosion, providing reaction conditions for aluminum powder. By comparing the discharge parameters and SW pressure signals of different quality aluminum powder suspensions, the electric explosion-driven aluminum powder discharge characteristics and the law of SW enhancement effect are obtained. The experiment shows that SW has two obvious peaks, which correspond to the evaporation SW (the first peak) and the breakup of the tube (the second peak). The effect of aluminum powder deflagration on the second SW is very significant. In the 300 mg aluminum powder suspension environment, the peak value of the second SW reaches 2.77 MPa, increased by 2.25 times compared to an optimal underwater electrical wire explosion, and the impulse of the SW is increased by about 50%. This paper also compares the SW signals in the suspension environment of 200 mg aluminum powder under different energy storage. It is found that with the increase of energy storage, both of two peaks of SW increase, reaching 3.17 MPa and 1.91 MPa respectively at 600 J. The impulse of SW also increases with the increase of energy storage. The impulse at 600 J energy storage is 41.12 Pa·s, which is twice as high as that at 300 J energy storage.
-
表 1 放电参数结果统计(典型值)
Table 1. Statistics of the discharge parameters
aluminum powder
quantity/mgmaximum
voltage/kVmaximum
current/kAmaximum measured
resistance/Ωdeposited energy
Ed/Jtotal deposited energy
Etotal/J0 37.02 10.24 5.43 116.12 309.15 100 16.46 10.37 1.75 85.04 312.67 200 10.21 10.72 0.96 76.17 310.28 300 6.69 11.87 0.61 46.95 299.71 -
[1] 韩若愚, 李柳霞, 钱盾, 等. 液体中金属丝电爆炸的研究现状与展望[J]. 高电压技术, 2021, 47(3):766-777. (Han Ruoyu, Li Liuxia, Qian Dun, et al. Exploding metal wires in liquids: current situation and prospects[J]. High Voltage Engineering, 2021, 47(3): 766-777Han Ruoyu, Li Liuxia, Qian Dun, et al. Exploding metal wires in liquids: current situation and prospects[J]. High Voltage Engineering, 2021, 47(3): 766-777 [2] 吴佳玮, 丁卫东, 韩若愚, 等. 大电流条件下气体火花开关电极烧蚀的研究进展[J]. 高电压技术, 2021, 47(9):3367-3379. (Wu Jiawei, Ding Weidong, Han Ruoyu, et al. Review of electrode erosion in a spark gap switch under large pulsed currents[J]. High Voltage Engineering, 2021, 47(9): 3367-3379Wu Jiawei, Ding Weidong, Han Ruoyu, et al. Review of electrode erosion in a spark gap switch under large pulsed currents[J]. High Voltage Engineering, 2021, 47(9): 3367-3379 [3] 张永民, 邱爱慈, 周海滨, 等. 面向化石能源开发的电爆炸冲击波技术研究进展[J]. 高电压技术, 2016, 42(4):1009-1017. (Zhang Yongming, Qiu Aici, Zhou Haibin, et al. Research progress in electrical explosion shockwave technology for developing fossil energy[J]. High Voltage Engineering, 2016, 42(4): 1009-1017Zhang Yongming, Qiu Aici, Zhou Haibin, et al. Research progress in electrical explosion shockwave technology for developing fossil energy[J]. High Voltage Engineering, 2016, 42(4): 1009-1017 [4] Han Ruoyu, Wu Jiawei, Zhou Haibin, et al. Experiments on the characteristics of underwater electrical wire explosions for reservoir stimulation[J]. Matter and Radiation at Extremes, 2020, 5: 047201. doi: 10.1063/1.5135725 [5] Grinenko A, Efimov S, Fedotov A, et al. Efficiency of the shock wave generation caused by underwater electrical wire explosion[J]. Journal of Applied Physics, 2006, 100: 113509. doi: 10.1063/1.2395603 [6] Han Ruoyu, Zhou Haibin, Liu Qiaojue, et al. Generation of electrohydraulic shock waves by plasma-ignited energetic materials: I. Fundamental mechanisms and processes[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 3999-4008. doi: 10.1109/TPS.2015.2468064 [7] 金涌. 电热等离子体对固体火药的辐射点火及燃烧特性研究[D]. 南京: 南京理工大学, 2014Jin Yong. Study on radiation ignition and combustion characteristic of solid propellant by electrothermal plasma[D]. Nanjing: Nanjing University of Science and Technology, 2014 [8] 李海元, 栗保明, 李鸿志. 等离子体增强火炮发射性能的实验研究[J]. 弹箭与制导学报, 2007, 27(2):297-299,312. (Li Haiyuan, Li Baoming, Li Hongzhi. Experimental study on gun performance augmentation by plasma[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2007, 27(2): 297-299,312 doi: 10.3969/j.issn.1673-9728.2007.02.095Li Haiyuan, Li Baoming, Li Hongzhi. Experimental study on gun performance augmentation by plasma[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2007, 27(2): 297-299, 312 doi: 10.3969/j.issn.1673-9728.2007.02.095 [9] Shi Huantong, Hu Yujia, Li Tuan, et al. Detonation of a nitromethane-based energetic mixture driven by electrical wire explosion[J]. Journal of Physics D: Applied Physics, 2022, 55: 05LT01. doi: 10.1088/1361-6463/ac3174 [10] Yanuka D, Rososhek A, Krasik Y E. Comparison of electrical explosions of Cu and Al wires in water and glycerol[J]. Physics of Plasmas, 2017, 24: 053512. doi: 10.1063/1.4983055 [11] Rososhek A, Efimov S, Goldman A, et al. Microsecond timescale combustion of aluminum initiated by an underwater electrical wire explosion[J]. Physics of Plasmas, 2019, 26: 053510. doi: 10.1063/1.5096638 [12] Efimov S, Gilburd L, Fedotov-Gefen A, et al. Aluminum micro-particles combustion ignited by underwater electrical wire explosion[J]. Shock Waves, 2012, 22(3): 207-214. doi: 10.1007/s00193-012-0361-3