留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NEG镀膜真空盒在线激活的初步研究

马文静 赵壮 张善才 王思慧 洪远志 范乐 王成宏 尉伟

马文静, 赵壮, 张善才, 等. NEG镀膜真空盒在线激活的初步研究[J]. 强激光与粒子束, 2022, 34: 084005. doi: 10.11884/HPLPB202234.220030
引用本文: 马文静, 赵壮, 张善才, 等. NEG镀膜真空盒在线激活的初步研究[J]. 强激光与粒子束, 2022, 34: 084005. doi: 10.11884/HPLPB202234.220030
Ma Wenjing, Zhao Zhuang, Zhang Shancai, et al. Preliminary study on in-situ activation of NEG coated vacuum chamber[J]. High Power Laser and Particle Beams, 2022, 34: 084005. doi: 10.11884/HPLPB202234.220030
Citation: Ma Wenjing, Zhao Zhuang, Zhang Shancai, et al. Preliminary study on in-situ activation of NEG coated vacuum chamber[J]. High Power Laser and Particle Beams, 2022, 34: 084005. doi: 10.11884/HPLPB202234.220030

NEG镀膜真空盒在线激活的初步研究

doi: 10.11884/HPLPB202234.220030
基金项目: 国家自然科学基金项目(12175225)
详细信息
    作者简介:

    马文静,mawenjing@mail.ustc.edu.cn

    通讯作者:

    王思慧,sihui@ustc.edu.cn

    尉 伟,weiwei@mail.iasf.ac.cn

  • 中图分类号: TL76

Preliminary study on in-situ activation of NEG coated vacuum chamber

  • 摘要: 合肥先进光源(HALF)是一台正在规划中的衍射极限同步辐射光源,其紧凑的物理设计和小孔径磁铁导致传统离散分布的真空泵系统很难达到衍射极限储存环所需的超高真空环境。镀有NEG(Non-Evaporable Getter)薄膜的小孔径真空盒不仅节约空间,还具有分布式吸气的能力,能满足衍射极限装置对超高真空的需求。NEG膜层需要在一定温度下激活才能具有吸气作用,因此在满足其他部件安全的前提下,它的激活方法与工艺十分重要。本文通过建立在线激活NEG薄膜的温度分析模型,模拟在加热温度为180 ℃和200 ℃情况下的NEG镀膜真空盒及磁铁的温度分布;采用聚酰亚胺加热膜缠绕管道的加热方式对管道的在线激活工艺进行初步研究,完成银铜(OFS)真空管在线激活时的温度测量,测得磁铁最高温度保持在40 ℃左右,验证了NEG镀膜真空管在线激活时四极磁铁的安全性。此研究为合肥先进光源NEG镀膜真空盒在线激活提供了解决方案和工作基础。
  • 图  1  真空管磁铁结构模型及模拟温度云图

    Figure  1.  Vacuum tube with magnet model and FEA temperature map

    图  2  真空管位于不同偏心位置时四极磁铁最高温度的变化

    Figure  2.  Maximum temperature of quadrupole magnet changes with different decentered parameter

    图  3  NEG在线激活温度实验系统

    图  4  NEG激活实验系统加热过程中温度变化图

    Figure  4.  Diagram of temperature change during heating of NEG activation experiment system

    图  5  短磁铁内部银铜管道加热温度云图

    Figure  5.  FEA temperature map of OFS tube inside the short magnet

    表  1  材料热传导系数

    Table  1.   Thermal conductivity of materials

    materialthermal conductivity/(W·m−1·℃−1)
    air 5×10−3
    magnet 20
    OFS 391
    PI 0.31
    下载: 导出CSV

    表  2  银铜管(包裹7层镀铝PI薄膜)加热功率表

    Table  2.   Heating power of OFS tube

    OFS temperature/℃magnet temperature/℃power/Wpower density/(W·cm−1)
    132.4 35.0 120.7 1.4
    167.1 39.4 166.6 1.9
    180.0 38.9 193.8 2.2
    207.5 40.7 226.5 2.6
    下载: 导出CSV

    表  3  铜管与四极磁铁温度

    Table  3.   Temperature of quadrupole magnet and OFS tube

    No.room temperature/℃measure temperature/℃FEA temperature/℃
    1 24.8 38.7 37.6
    2 24.8 41.3 40.5
    3 24.8 36.2 35.0
    下载: 导出CSV
  • [1] 徐宏亮, 张剑锋, 黄贵荣, 等. 合肥储存环电子束流寿命分析[J]. 强激光与粒子束, 2006, 18(3):455-458. (Xu Hongliang, Zhang Jianfeng, Huang Guirong, et al. Analysis of beam lifetime in Hefei storage ring[J]. High Power Laser and Particle Beams, 2006, 18(3): 455-458

    Xu Hongliang, Zhang Jianfeng, Huang Guirong, et al. Analysis of beam lifetime in Hefei storage ring[J]. High Power Laser and Particle Beams, 2006, 18(3): 455-458
    [2] Al-Dmour E, Ahlback J, Einfeld D, et al. Diffraction-limited storage-ring vacuum technology[J]. Journal of Synchrotron Radiation, 2014, 21: 878-883. doi: 10.1107/S1600577514019286
    [3] Sergei G. Lessons learned from the ESRF magnets and vacuum chamber assembling[C]//Beam Tests and Commissioning of Low Emittance Storage Rings. 2019.
    [4] Yang Yuchen, Ma Yongsheng, Wang Jia’ou, et al. Activation of Zr, ZrVHf and TiZrV non-evaporative getters characterized by in situ synchrotron radiation photoemission spectroscopy[J]. Applied Sciences, 2021, 11: 4844. doi: 10.3390/app11114844
    [5] Chuntonov K, Setina J, Douglass G. The newest getter technologies: materials, processes, equipment[J]. Journal of Materials Science and Chemical Engineering, 2015, 3(9): 57-67. doi: 10.4236/msce.2015.39008
    [6] Grabski M, Al-Dmour E. Commissioning and operation status of the MAX IV 3 GeV storage ring vacuum system[J]. Journal of Synchrotron Radiation, 2021, 28(3): 718-731. doi: 10.1107/S1600577521002599
    [7] Rocha T. The vacuum system of the upcoming SIRIUS light source in Brazil[C]//Beam Dynamics Meets Vacuum, Collimations and Surfaces. 2017.
    [8] He Ping, Guo Dizhou, Liu Baiqi, et al. Deposition of non-evaporative getters R&D activity for HEPS-TF[C]//Proceedings of 2nd North American Particle Accelerator Conference. 2016.
    [9] He Ping, Ma Yongsheng, Yang Yuchen, et al. Preparation and characterization of non-evaporable Ti–Zr–V getter films for HEPS[C]//Proceedings of the 60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources. 2018.
    [10] 颜攀, 韩兴博, 冷海燕, 等. 非蒸散型吸气剂的研究进展[J]. 真空科学与技术学报, 2018, 38(8):650-656. (Yan Pan, Han Xingbo, Leng Haiyan, et al. Latest development of non-evaporable getter materials[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(8): 650-656

    Yan Pan, Han Xingbo, Leng Haiyan, et al. Latest development of non-evaporable getter materials[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(8): 650-656
    [11] 张波, 尉伟, 范乐, 等. TiZrV吸气剂薄膜吸气性能的研究[J]. 真空科学与技术学报, 2012, 32(2):114-117. (Zhang Bo, Wei Wei, Fan Le, et al. Development and characterization of TiZrV getter films[J]. Chinese Journal of Vacuum Science and Technology, 2012, 32(2): 114-117 doi: 10.3969/j.issn.1672-7126.2012.02.06

    Zhang Bo, Wei Wei, Fan Le, et al. Development and characterization of TiZrV getter films[J]. Chinese Journal of Vacuum Science and Technology, 2012, 32(2): 114-117 doi: 10.3969/j.issn.1672-7126.2012.02.06
    [12] Prodromides A E, Scheuerlein C, Taborelli M. Lowering the activation temperature of TiZrV non-evaporable getter films[J]. Vacuum, 2001, 60(1/2): 35-41.
    [13] Al-Dmour E, Einfeld D, Pasquaud J, et al. Vacuum system design for the MAX IV 3 GeV ring[C]//Proceedings of the 2nd International Conference on Particle Accelerator. 2011.
    [14] Paolo C. The septum magnet vacuum chambers of the LHC: production procedure and vacuum characterization of the first prototypes[C]//The 9th European Vacuum Conference. 2005.
    [15] Zhu Bangle, Ge Xiaoqin, Wang Sihui, et al. Activation and pumping characteristics of Ti-Zr-V films deposited on narrow tubeds[J]. Nuclear Science and Techniques, 2021, 32: 50. doi: 10.1007/s41365-021-00880-4
    [16] 张波, 王勇, 尉伟, 等. 直流磁控溅射法在管道内壁镀TiZrV薄膜[J]. 强激光与粒子束, 2010, 22(9):2124-2128. (Zhang Bo, Wang Yong, Wei Wei, et al. Deposition of TiZrV coatings onto inner wall of stainless steel pipe by DC magnetron sputtering[J]. High Power Laser and Particle Beams, 2010, 22(9): 2124-2128 doi: 10.3788/HPLPB20102209.2124

    Zhang Bo, Wang Yong, Wei Wei, et al. Deposition of TiZrV coatings onto inner wall of stainless steel pipe by DC magnetron sputtering[J]. High Power Laser and Particle Beams, 2010, 22(9): 2124-2128 doi: 10.3788/HPLPB20102209.2124
    [17] Wang Sihui, Wang Zhiwei, Shu Xin, et al. Activation characterization of the Ti-Zr-V getter films deposited by magnetron sputtering[J]. Applied Surface Science, 2020, 528: 147059. doi: 10.1016/j.apsusc.2020.147059
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  990
  • HTML全文浏览量:  352
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-19
  • 修回日期:  2022-05-25
  • 网络出版日期:  2022-05-30
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回