留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽带Ka波段平面反射阵列天线设计

张治强 赵加宁 李芳 傅城 张海川

张治强, 赵加宁, 李芳, 等. 宽带Ka波段平面反射阵列天线设计[J]. 强激光与粒子束, 2022, 34: 083001. doi: 10.11884/HPLPB202234.220037
引用本文: 张治强, 赵加宁, 李芳, 等. 宽带Ka波段平面反射阵列天线设计[J]. 强激光与粒子束, 2022, 34: 083001. doi: 10.11884/HPLPB202234.220037
Zhang Zhiqiang, Zhao Jia’ning, Li Fang, et al. Design of a broadband Ka-band reflectarray antenna[J]. High Power Laser and Particle Beams, 2022, 34: 083001. doi: 10.11884/HPLPB202234.220037
Citation: Zhang Zhiqiang, Zhao Jia’ning, Li Fang, et al. Design of a broadband Ka-band reflectarray antenna[J]. High Power Laser and Particle Beams, 2022, 34: 083001. doi: 10.11884/HPLPB202234.220037

宽带Ka波段平面反射阵列天线设计

doi: 10.11884/HPLPB202234.220037
详细信息
    作者简介:

    张治强,zqzhang@xidian.edu.cn

    通讯作者:

    赵加宁,zjn317253663@126.com

  • 中图分类号: TN822.8

Design of a broadband Ka-band reflectarray antenna

  • 摘要: 平面反射阵列天线的发展受到了带宽与功率容量两方面限制。为此,本文首先基于多谐振技术提出了一种新型平面反射阵列单元结构,相比于传统单元,所提出单元结构具有功率容量高、剖面低且相移曲线线性度好的特点。其次利用所提出单元,通过优化阵面特性在Ka波段设计了包含20×20个单元的平面反射阵列天线。最后利用电磁仿真软件进行模拟计算,结果显示在中心频点35 GHz处,天线峰值增益为27.58 dBi,口径效率为52.33%,副瓣小于−16.08 dB,并且在30.41~39.64 GHz频率范围内(相对带宽26.37%)天线增益跌落小于3 dB,并且所设计平面反射阵列天线最大功率容量可以达到 13.99 MW,功率密度为218.54 W/mm2
  • 图  1  单元结构与反射特性图

    Figure  1.  Structure and reflection characteristics of the proposed element

    图  2  所提出单元表面电场分布图

    Figure  2.  Surface electric field distribution of the proposed element

    图  3  入射角对单元移相特性的影响

    Figure  3.  Reflection phase with different incident angles

    图  4  频率对单元移相特性的影响

    Figure  4.  Reflection phase with different frequencies

    图  5  Ka波段平面反射阵列天线模型示意图

    Figure  5.  Model of Ka-band reflectarray antenna

    图  6  阵面的相位分布以及各单元尺寸分布图

    Figure  6.  Phase and size distribution of the designed reflectarray

    图  7  设计的平面反射阵列天线辐射方向图以及增益带宽图

    Figure  7.  Radiation pattern and gain bandwidth of the reflectarray atenna

    图  8  所设计平面反射阵列天线阵面电场分布图

    Figure  8.  Electric field distribution of the designed reflectarray surface

  • [1] Hum S V, Okoniewski M. An electronically tunable reflectarray using varactor diode-tuned elements[C]//Proceedings of 2004 IEEE Antennas and Propagation Society Symposium. 2004: 1827-1830.
    [2] Xiong Fuqin, Romanofsky R R. Study of behavior of digital modulations for beam steerable reflectarray antennas[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(3): 1083-1097. doi: 10.1109/TAP.2004.842694
    [3] Hasani H, Peixeiro C, Skrivervik A K, et al. Single-layer quad-band printed reflectarray antenna with dual linear polarization[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5522-5528. doi: 10.1109/TAP.2015.2481918
    [4] Yang Fan, Kim Y, Yu A, et al. A single layer reflectarray antenna for C/X/Ka bands applications[C]//Proceedings of 2007 International Conference on Electromagnetics in Advanced Applications. 2007.
    [5] Beccaria M, Pirinoli P, Orefice M. Investigation on convex conformal reflectarray antennas exploiting double parameter technique[C]//Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP). 2016.
    [6] Nayeri P, Yang Fan, Elsherbeni A Z. Radiation characteristics of conformal reflectarray antennas[C]//Proceedings of 2011 IEEE International Symposium on Antennas and Propagation (APSURSI). 2011.
    [7] Martinez-de-Rioja E, Encinar J A, Barba M, et al. Dual polarized reflectarray transmit antenna for operation in Ku- and Ka-bands with independent feeds[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3241-3246. doi: 10.1109/TAP.2017.2689059
    [8] Han C, Rodenbeck C, Huang J, et al. A C/Ka dual frequency dual layer circularly polarized reflectarray antenna with microstrip ring elements[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(11): 2871-2876. doi: 10.1109/TAP.2004.835144
    [9] Deng Ruyuan, Xu Shenheng, Yang Fan, et al. An FSS-backed Ku/Ka quad-band reflectarray antenna for satellite communications[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(8): 4353-4358. doi: 10.1109/TAP.2018.2835725
    [10] Encinar J A. Design of two-layer printed reflectarrays using patches of variable size[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(10): 1403-1410. doi: 10.1109/8.954929
    [11] Vosoogh A, Keyghobad K, Khaleghi A, et al. A high-efficiency Ku-band reflectarray antenna using single-layer multiresonance elements[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 891-894. doi: 10.1109/LAWP.2014.2321035
    [12] Fan Chong, Choi W W, Yang Wanchen, et al. A low cross-polarization reflectarray antenna based on SIW slot antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 333-336. doi: 10.1109/LAWP.2016.2574888
    [13] Dahri M H, Jamaluddin M H, Seman F C, et al. A novel asymmetric patch reflectarray antenna with ground ring slots for 5G communication systems[J]. Electronics, 2020, 9: 1450. doi: 10.3390/electronics9091450
    [14] Li Xiaoyu, Wan Yinglu, Liu Juan, et al. Broadband electronically scanned reflectarray antenna with liquid crystals[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(3): 396-400. doi: 10.1109/LAWP.2021.3051797
    [15] Mahmoud A, Kishk A A, Hao Zhangcheng, et al. Ka-band circularly polarized reflectarray: using a double-layers cross slot[J]. IEEE Antennas and Propagation Magazine, 2016, 58(4): 60-68. doi: 10.1109/MAP.2016.2569428
  • 加载中
图(8)
计量
  • 文章访问数:  802
  • HTML全文浏览量:  402
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-29
  • 修回日期:  2022-04-19
  • 录用日期:  2022-06-07
  • 网络出版日期:  2022-06-13
  • 刊出日期:  2022-08-15

目录

    /

    返回文章
    返回