留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适用于激光聚变实验的短焦距高放大倍率Wolter显微镜设计

叶良灏 徐捷 李文杰 王新 穆宝忠

叶良灏, 徐捷, 李文杰, 等. 适用于激光聚变实验的短焦距高放大倍率Wolter显微镜设计[J]. 强激光与粒子束, 2022, 34: 082001. doi: 10.11884/HPLPB202234.220038
引用本文: 叶良灏, 徐捷, 李文杰, 等. 适用于激光聚变实验的短焦距高放大倍率Wolter显微镜设计[J]. 强激光与粒子束, 2022, 34: 082001. doi: 10.11884/HPLPB202234.220038
Ye Lianghao, Xu Jie, Li Wenjie, et al. Design of Wolter microscope with short focal length and high magnification for laser fusion experiment[J]. High Power Laser and Particle Beams, 2022, 34: 082001. doi: 10.11884/HPLPB202234.220038
Citation: Ye Lianghao, Xu Jie, Li Wenjie, et al. Design of Wolter microscope with short focal length and high magnification for laser fusion experiment[J]. High Power Laser and Particle Beams, 2022, 34: 082001. doi: 10.11884/HPLPB202234.220038

适用于激光聚变实验的短焦距高放大倍率Wolter显微镜设计

doi: 10.11884/HPLPB202234.220038
基金项目: 国家自然科学基金项目(12005157);国家自然科学基金项目(11905281)
详细信息
    作者简介:

    叶良灏,1930970@tongji.edu.cn

    通讯作者:

    徐 捷,1310581@tongji.edu.cn

  • 中图分类号: O434.1

Design of Wolter microscope with short focal length and high magnification for laser fusion experiment

  • 摘要: 围绕内爆压缩及阻滞阶段相关物理实验的诊断需求,提出了一种满足阿贝正弦条件的短焦距高放大倍率Wolter-Ⅲ型X射线显微镜的光学设计。详细介绍了Wolter-Ⅲ型显微镜的结构特点和设计方法,与Wolter-Ⅰ型相比可以通过将主平面向靠近物点方向移动的方式减小系统焦距,从而获得更大的放大倍数,实现显微镜与探测器的像质匹配,提高诊断系统的空间分辨。由光线追迹可以得出,在±190 μm的视场范围内,空间分辨率优于3 μm;在±240 μm范围内分辨率优于5 μm;在±300 μm范围内分辨率优于8 μm,几何集光立体角约为5×10−6 sr。
  • 图  1  Wolter-Ⅰ型和Wolter-Ⅲ型光学原理图

    Figure  1.  Schematic of Wolter-Ⅰ and Wolter-Ⅲ optical microscopes

    图  2  掠入射角θ5、镜长L1和镜长L2对Wolter系统分辨率的影响

    Figure  2.  Effect of grazing incident angle θ5, mirror length L1 and mirror length L2 on resolution of Wolter system

    图  3  三个重要对准参数示意图

    Figure  3.  Schematic diagram of three important alignment parameters

    图  4  对准误差与系统分辨率的关系

    Figure  4.  The relationship between alignment error and system resolution

    图  5  Wolter-Ⅲ型显微镜面形参数

    Figure  5.  Surface parameters of Wolter-Ⅲ microscope

    图  6  移动物距后的成像结果

    Figure  6.  Imaging results after moving object distance

    表  1  Wolter-Ⅰ型和Wolter-Ⅲ型显微镜光学结构参数

    Table  1.   Optical structure parameters of Wolter-Ⅰ and Wolter-Ⅲ microscopes

    contourobject distance/mmgrazing angle/(°)a/mmb/mmmirror length/mmf/mmmagnification
    Wolter-Ihyperboloid292.40.4165.83.01530020
    ellipsoid307.80.43 315.913.615.8
    Wolter-Ⅲhyperboloid307.80.32 956.03.68242.325
    ellipsoid292.40.4194.01.210
    下载: 导出CSV

    表  2  Wolter-Ⅰ型和Wolter-Ⅲ型系统仿真结果比较

    Table  2.   Comparison of simulation results between Wolter-Ⅰ and Wolter-Ⅲ systems

    the field of view corresponds to the spatial resolution/μmsolid light angle/sr
    1 μm3 μm5 μm8 μm
    Wolter-Ⅰ±260±460±600±7606.1×10−5
    Wolter-Ⅲ±100±190±240±3005×10−6
    下载: 导出CSV
  • [1] Yamauchi K, Yabashi M, Ohashi H, et al. Nanofocusing of X-ray free-electron lasers by grazing-incidence reflective optics[J]. Journal of Synchrotron Radiation, 2015, 22(Pt 3): 592-598.
    [2] Wolter H. Spiegelsysteme streifenden einfalls als abbildende optiken für röntgenstrahlen[J]. Annalen der Physik, 1952, 445(1/2): 94-114.
    [3] Matsuyama S, Mimura H, Yumoto H, et al. Development of mirror manipulator for hard-X-ray nanofocusing at sub-50-nm level[J]. Review of Scientific Instruments, 2006, 77: 093107. doi: 10.1063/1.2349594
    [4] Saha T T. Aberrations for grazing incidence telescopes[J]. Applied Optics, 1988, 27(8): 1492-1498. doi: 10.1364/AO.27.001492
    [5] Saha T T. Transverse ray aberrations for paraboloid-hyperboloid telescopes[J]. Applied Optics, 1985, 24(12): 1856-1863. doi: 10.1364/AO.24.001856
    [6] Yamada J, Matsuyama S, Yasuda S, et al. Development of concave-convex imaging mirror system for a compact and achromatic full-field X-ray microscope[C]//Proceedings of SPIE 10386, Advances in X-Ray/EUV Optics and Components XII. 2017.
    [7] Yamada J, Matsuyama S, Sano Y, et al. Simulation of concave–convex imaging mirror system for development of a compact and achromatic full-field X-ray microscope[J]. Applied Optics, 2017, 56(4): 967-974. doi: 10.1364/AO.56.000967
    [8] Yamada J, Matsuyama S, Sano Y, et al. Compact reflective imaging optics in hard X-ray region based on concave and convex mirrors[J]. Optics Express, 2019, 27(3): 3429-3438. doi: 10.1364/OE.27.003429
    [9] Serlemitsos P J, Soong Y, Chan K W, et al. The X-ray telescope onboard Suzaku[J]. Publications of the Astronomical Society of Japan, 2007, 59(s1): S9-S21.
    [10] Takahashi T, Mitsuda K, Kelley R, et al. The ASTRO-H X-ray observatory[C]//Proceedings of SPIE 8443, Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray. 2012: 84431Z.
    [11] Zuo Fuchang, Mei Zhiwu, Ma Tao, et al. Design and development of grazing incidence X-ray mirrors[C]//Proceedings of SPIE 9796, Selected Papers of the Photoelectronic Technology Committee Conferences Held November 2015. 2016: 97961O.
    [12] Chon K S, Namba Y, Yoon K H. Optimization of a Wolter type I mirror for a soft X-ray microscope[J]. Precision Engineering, 2006, 30(2): 223-230. doi: 10.1016/j.precisioneng.2005.09.002
    [13] 李亚冉, 谢青, 陈志强, 等. 激光等离子体诊断用Wolter型X射线显微镜的设计[J]. 强激光与粒子束, 2018, 30:062002. (Li Yaran, Xie Qing, Chen Zhiqiang, et al. Optical design of Wolter X-ray microscope for laser plasma diagnostics[J]. High Power Laser and Particle Beams, 2018, 30: 062002 doi: 10.11884/HPLPB201830.170440

    Li Yaran, Xie Qing, Chen Zhiqiang, et al. Optical design of Wolter X-ray microscope for laser plasma diagnostics[J]. High Power Laser and Particle Beams, 2018, 30: 062002,doi: 10.11884/HPLPB201830.170440
    [14] Chon K S, Namba Y, Yoon K H. Single-point diamond turning of aspheric mirror with inner reflecting surfaces[J]. Key Engineering Materials, 2007, 364/366: 39-42. doi: 10.4028/www.scientific.net/KEM.364-366.39
    [15] Chon K S, Namba Y. Single-point diamond turning of electroless nickel for flat X-ray mirror[J]. Journal of Mechanical Science and Technology, 2010, 24(8): 1603-1609. doi: 10.1007/s12206-010-0512-3
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  240
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-30
  • 修回日期:  2022-06-10
  • 网络出版日期:  2022-06-18
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回