Development of digital beam position monitor system based on pilot tone technology
-
摘要: 为改善传统的束流位置测量电子学系统受电子学通道非线性、温度漂移和系统噪声等因素对位置测量精度带来的影响,介绍了一种新型的基于导频技术的数字束流位置测量电子学系统。该系统硬件包括模拟信号采集电子学、数字信号处理电子学和PTC(导频信号耦合)模块;软件包括顶层应用软件和底层驱动,束流信号与导频信号在耦合电路中耦合后,经电子学处理,在FPGA中计算得到归一化后的束流位置信息。实验室测试结果分析,经导频信号归一化处理后能够有效改善各通道随温度变化的现象,束流位置漂移从4.5 μm改善至0.5 μm,分辨率从57.25 nm提升到13.37 nm,并且进行导频信号开关实验更加直观观测导频信号对束流位置测量的在线校正效果。设计的基于导频信号的数字束流位置测量(DBPM)电子学可以高效、实时地实现对加速器束流位置的在线校正,提升电子学系统的实时分辨率性能。Abstract: A new DBPM electronics system based on pilot tone is introduced in this paper to improve the traditional DBPM electronics system which is affected by the non-linearity of electronic channel, temperature drift and system noise.The hardware of the electronics consists of analog signal acquisition electronics, digital signal processing electronics and pilot tone combiner electronics. The software consists of application software and firmware.The beam signal and pilot tone signal are coupled in the pilot tone combiner, and then the combined signal processed by electronic hardware board, and finally calculated by FPGA(Field Programmable Gate Array) to obtain the normalized beam position information. The electronics was tested in the laboratory and it is shown that the normalized pilot tone can effectively educe the measurement variation with temperature of each channel. After normalization, the accuracy the channel changing with temperature is effectively improved. The beam position drift is improved from 4.5 μm to 0.5 μm, and the resolution is improved from 57.25 nm to 13.37 nm. And the pilot tone switching experiment can show intuitively the effect of the pilot signal on the beam position measurement of online correction. The design of DBPM electronics based on pilot tone can realize online correction of beam position measurement efficiently and in real time, and improve the real-time resolution performance of the electronics system.
-
表 1 导频信号耦合电路一致性测试
Table 1. Conformance test of PTC circuit
Channel Δ/dB Ch A 20.50 Ch B 20.20 Ch C 20.10 Ch D 20.30 表 2 导频信号耦合电路隔离度测试
Table 2. Isolation test of PTC circuit
input
0 dBmoutput/dBm Ch A+PT Ch B+PT Ch C+PT Ch D+PT Ch A −2.02 −85.04 −68.54 −75.45 Ch B −88.73 −1.88 −82.52 −82.92 Ch C −70.07 −80.18 −2.03 −87.42 Ch D −91.33 −82.98 −88.26 −1.87 -
[1] 张闯, 马力. 北京正负电子对撞机重大改造工程加速器的设计与研制[M]. 上海: 上海科学技术出版社, 2015Zhang Chuang, Ma Li. Design and development of accelerator for Beijing Electron Positron Collider[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2015 [2] 中国科学院高能物理研究所. HEPS-TF束测系统初步设计报告[R]. 北京: 中国科学院高能物理研究所, 2015The Institute of High Energy Physics of the Chinese Academy of Sciences. HEPS-TF beam measurement system preliminary design report[R]. Beijing: The Institute of High Energy Physics of the Chinese Academy of Sciences, 2015 [3] 中国科学院高能物理研究所. 北京正负电子对撞机重大改造工程初步设计—直线加速器[R]. IHEP-BEPCII-SB-03-02The Institute of High Energy Physics of the Chinese Academy of Sciences. Preliminary design of Beijing Electron-Positron Collider Renovation Project—Linear accelerator[R]. IHEP-BEPCII-SB-03-02 [4] 邓庆勇, 曹建社, 叶强, 等. BEPCⅡ储存环束团流强测量[J]. 强激光与粒子束, 2014, 26:075101. (Deng Qingyong, Cao Jianshe, Ye Qiang, et al. Bunch current measurement system for BEPC Ⅱ storage ring[J]. High Power Laser and Particle Beams, 2014, 26: 075101 doi: 10.11884/HPLPB201426.075101Deng Qingyong, Cao Jianshe, Ye Qiang, et al. Bunch current measurement system for BEPC Ⅱ storage ring[J]. High Power Laser and Particle Beams, 2014, 26: 075101 doi: 10.11884/HPLPB201426.075101 [5] Brajnik G, Carrato S, Bassanese S, et al. Pilot tone as a key to improving the spatial resolution of eBPMs[J]. AIP Conference Proceedings, 2016, 1741: 020013. [6] 杨静, 杜垚垚, 汪林, 等. BEPC Ⅱ直线加速器数字BPM前端调理电路的研制[J]. 强激光与粒子束, 2021, 33:054005. (Yang Jing, Du Yaoyao, Wang Lin, et al. Development of digital BPM front-end conditioning circuit for BEPC Ⅱ linac[J]. High Power Laser and Particle Beams, 2021, 33: 054005Yang Jing, Du Yaoyao, Wang Lin, et al. Development of digital BPM front-end conditioning circuit for BEPC Ⅱ linac[J]. High Power Laser and Particle Beams, 2021, 33: 054005 [7] 易星. 加速器束流信号调理及高速采集技术研究[D]. 北京: 中国科学院大学, 2012Yi Xing. Research on accelerator beam signal conditioning and high-speed acquisition technology[D]. Beijing: University of Chinese Academy of Sciences, 2012 [8] Du Yaoyao, Yang Jing, Wang Lin, et al. Design of RF front end of digital BPM for BEPCII[J]. Radiation Detection Technology and Methods, 2019, 3: 38. doi: 10.1007/s41605-019-0119-x [9] Maesaka H, Dewa H. Development status of a stable BPM system for the SPring-8 upgrade[C]//Proceedings of the 5th International Beam Instrumentation Conference. 2016: 322-325. [10] 张醒儿, 张琪, 曹建社, 等. 高能同步辐射光源逐束团束流位置测量电子学研制[J]. 原子能科学技术, 2020, 54(9):1709-1714. (Zhang Xing’er, Zhang Qi, Cao Jianshe, et al. Development of bunch-by-bunch beam position measurement electronics for high energy photon source[J]. Atomic Energy Science and Technology, 2020, 54(9): 1709-1714 doi: 10.7538/yzk.2019.youxian.0708Zhang Xing’er, Zhang Qi, Cao Jianshe, et al. Development of bunch-by-bunch beam position measurement electronics for high energy photon source[J]. Atomic Energy Science and Technology, 2020, 54(9): 1709-1714 doi: 10.7538/yzk.2019.youxian.0708 [11] 张鹏. HEPS数字BPM处理器研制[D]. 北京: 中国科学院高能物理研究所, 2016Zhang Peng. HEPS digital BPM processor development[D]. Beijing: The Institute of High Energy Physics of the Chinese Academy of Sciences, 2016 [12] 张醒儿, 杜垚垚, 张琪, 等. 基于BEPCⅡ数据的数字束流位置测量器算法离线分析[J]. 强激光与粒子束, 2018, 30:105103. (Zhang Xing’er, Du Yaoyao, Zhang Qi, et al. Offline research of digital beam position monitor algorithm based on BEPC Ⅱ[J]. High Power Laser and Particle Beams, 2018, 30: 105103 doi: 10.11884/HPLPB201830.170523Zhang Xing’er, Du Yaoyao, Zhang Qi, et al. Offline research of digital beam position monitor algorithm based on BEPC Ⅱ[J]. High Power Laser and Particle Beams, 2018, 30: 105103 doi: 10.11884/HPLPB201830.170523 [13] 马宇飞, 周嘉申, 曹建社, 等. 基于BEPCⅡ的数字束流位置探测器信号处理算法的FPGA实现[J]. 原子能科学技术, 2018, 52(10):1874-1878. (Ma Yufei, Zhou Jiashen, Cao Jianshe, et al. Implementation of digital beam position monitor signal processing algorithm in FPGA based on BEPC Ⅱ[J]. Atomic Energy Science and Technology, 2018, 52(10): 1874-1878 doi: 10.7538/yzk.2018.youxian.0093Ma Yufei, Zhou Jiashen, Cao Jianshe, et al. Implementation of digital beam position monitor signal processing algorithm in FPGA based on BEPC Ⅱ[J]. Atomic Energy Science and Technology, 2018, 52(10): 1874-1878 doi: 10.7538/yzk.2018.youxian.0093 [14] 赖龙伟, 冷用斌, 易星, 等. 数字束流位置信号处理算法优化[J]. 强激光与粒子束, 2013, 25(1):109-113. (Lai Longwei, Leng Yongbin, Yi Xing, et al. Optimization of signal processing algorithm for digital beam position monitor[J]. High Power Laser and Particle Beams, 2013, 25(1): 109-113 doi: 10.3788/HPLPB20132501.0109Lai Longwei, Leng Yongbin, Yi Xing, et al. Optimization of signal processing algorithm for digital beam position monitor[J]. High Power Laser and Particle Beams, 2013, 25(1): 109-113 doi: 10.3788/HPLPB20132501.0109 [15] 随艳峰, 杜垚垚, 叶强, 等. 基于BEPCⅡ数字束流位置测量系统电子学系统的设计与实现[J]. 原子能科学技术, 2020, 54(1):172-178. (Sui Yanfeng, Du Yaoyao, Ye Qiang, et al. Development of digital beam position monitor electronics system based on BEPCⅡ[J]. Atomic Energy Science and Technology, 2020, 54(1): 172-178 doi: 10.7538/yzk.2019.youxian.0044Sui Yanfeng, Du Yaoyao, Ye Qiang, et al. Development of digital beam position monitor electronics system based on BEPCⅡ[J]. Atomic Energy Science and Technology, 2020, 54(1): 172-178 doi: 10.7538/yzk.2019.youxian.0044 [16] 刘垄, 张成浩. 机载雷达综合网络射频通道隔离度改进研究[J]. 现代雷达, 2021, 43(5):85-89. (Liu Long, Zhang Chenghao. Improvement of RF channel isolation in synthetic network for airborne radar application[J]. Modern Radar, 2021, 43(5): 85-89Liu Long, Zhang Chenghao. Improvement of RF channel isolation in synthetic network for airborne radar application[J]. Modern Radar, 2021, 43(5): 85-89