[1] |
Elder F R, Gurewitsch A M, Langmuir R V, et al. Radiation from electrons in a synchrotron[J]. Physical Review, 1947, 71: 829.
|
[2] |
赵振堂. 先进X射线光源加速器原理与关键技术[M]. 上海: 上海交通大学出版社, 2021Zhao Zhentang. Principles and key technologies of advanced X-ray light source accelerators[M]. Shanghai: Shanghai Jiao Tong University Press, 2021
|
[3] |
Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 2014, 21(5): 843-855. doi: 10.1107/S1600577514011515
|
[4] |
Jankowiak A, Wüstefeld G. Low-α operation of BESSY II and future plans for an alternating bunch length scheme BESSYVSR[J]. Synchrotron Radiation News, 2013, 26(3): 22-24. doi: 10.1080/08940886.2013.791212
|
[5] |
Byrd J M, Loftsdóttir Á, Venturini M, et al. Stable CSR in storage rings: a model[R]. LBNL-56777, 2005.
|
[6] |
Byrd J M, Leemans W P, Loftsdottir A, et al. Observation of broadband self-amplified spontaneous coherent terahertz synchrotron radiation in a storage ring[J]. Physical Review Letters, 2002, 89: 224801. doi: 10.1103/PhysRevLett.89.224801
|
[7] |
Venturini M, Warnock R. Bursts of coherent synchrotron radiation in electron storage rings: a dynamical model[J]. Physical Review Letters, 2002, 89: 224802. doi: 10.1103/PhysRevLett.89.224802
|
[8] |
Schoenlein R W, Chattopadhyay S, Chong H H W, et al. Generation of femtosecond pulses of synchrotron radiation[J]. Science, 2000, 287(5461): 2237-2240. doi: 10.1126/science.287.5461.2237
|
[9] |
Ingold G, Beaud P, Johnson S L, et al. Technical report: FEMTO: a sub-ps tunable hard X-ray undulator source for laser/X-ray pump-probe experiments at the SLS[J]. Synchrotron Radiation News, 2007, 20(5): 35-39. doi: 10.1080/08940880701631377
|
[10] |
Zholents A A, Zolotorev M S. Femtosecond X-ray pulses of synchrotron radiation[J]. Physical Review Letters, 1996, 76(6): 912-915. doi: 10.1103/PhysRevLett.76.912
|
[11] |
Billardon M, Elleaume P, Ortega J M, et al. First operation of a storage-ring free-electron laser[J]. Physical Review Letters, 1983, 51(18): 1652-1655. doi: 10.1103/PhysRevLett.51.1652
|
[12] |
Girard B, Lapierre Y, Ortega J M, et al. Optical frequency multiplication by an optical klystron[J]. Physical Review Letters, 1984, 53(25): 2405-2408. doi: 10.1103/PhysRevLett.53.2405
|
[13] |
Couprie M E, Billardon M, Velghe M, et al. Free-electron-laser oscillation on the super-ACO storage ring at Orsay[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1990, 296(1/3): 13-19.
|
[14] |
Couprie M E, Velghe M, Prazeres R, et al. Results and analysis of free-electron-laser oscillation in a high-energy storage ring[J]. Physical Review A, 1991, 44(2): 1301-1315. doi: 10.1103/PhysRevA.44.1301
|
[15] |
Yamada K, Yamazaki T, Sugiyama S, et al. Visible oscillation of storage-ring free electron laser on TERAS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 318(1/3): IN1,33-37.
|
[16] |
Litvinenko V N, Burnham B, Emamian M, et al. Gamma-ray production in a storage ring free-electron laser[J]. Physical Review Letters, 1997, 78(24): 4569-4572. doi: 10.1103/PhysRevLett.78.4569
|
[17] |
Yamazaki T, Yamada K, Sugiyama S, et al. First lasing of the NIJI-IV storage-ring free-electron laser[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 331(1/3): 27-33.
|
[18] |
Deacon D A G, Billardon M, Elleaume P, et al. Optical klystron experiments for the ACO storage ring free electron laser[J]. Applied Physics B, 1984, 34(4): 207-219. doi: 10.1007/BF00697637
|
[19] |
Litvinenko V N, Park S H, Pinayev I V, et al. Operation of the OK-4/Duke storage ring FEL below 200 nm[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 475(1/3): 195-204.
|
[20] |
Wu Y K, Vinokurov N A, Mikhailov S, et al. High-gain lasing and polarization switch with a distributed optical-klystron free-electron laser[J]. Physical Review Letters, 2006, 96: 224801. doi: 10.1103/PhysRevLett.96.224801
|
[21] |
Yamanaka C. Free electron laser: technical issues and prospects in Japan[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 331(1/3): 191-198.
|
[22] |
Khan S, Bakr M, Höner M, et al. Coherent harmonic generation at DELTA: a new facility for ultrashort pulses in the VUV and THz regime[J]. Synchrotron Radiation News, 2011, 24(5): 18-23. doi: 10.1080/08940886.2011.618092
|
[23] |
陈念, 徐宏亮, 刘金英, 等. 储存环相干谐波自由电子激光器新光学速调管工作状态分析[J]. 强激光与粒子束, 2003, 15(6):524-528Chen Nian, Xu Hongliang, Liu Jinying, et al. Working condition of reconstructed optical klystron of CHG-SRFEL[J]. High Power Laser and Particle Beams, 2003, 15(6): 524-528
|
[24] |
Yu Lihua. Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers[J]. Physical Review A, 1991, 44(8): 5178-5193. doi: 10.1103/PhysRevA.44.5178
|
[25] |
Stupakov G. Using the beam-echo effect for generation of short-wavelength radiation[J]. Physical Review Letters, 2009, 102: 074801. doi: 10.1103/PhysRevLett.102.074801
|
[26] |
Xiang Dao, Stupakov G. Echo-enabled harmonic generation free electron laser[J]. Physical Review Special Topics—Accelerators and Beams, 2009, 12: 030702. doi: 10.1103/PhysRevSTAB.12.030702
|
[27] |
Xiang Dao, Wan Weishi. Generating ultrashort coherent soft X-ray radiation in storage rings using angular-modulated electron beams[J]. Physical Review Letters, 2010, 104: 084803. doi: 10.1103/PhysRevLett.104.084803
|
[28] |
Stupakov G. Frequency multiplication using coherent radiation of a ‘‘snake’’ beam[J]. Physical Review Accelerators and Beams, 2013, 16: 010702. doi: 10.1103/PhysRevSTAB.16.010702
|
[29] |
Evain C, Loulergue A, Nadji A, et al. Soft X-ray femtosecond coherent undulator radiation in a storage ring[J]. New Journal of Physics, 2012, 14: 023003. doi: 10.1088/1367-2630/14/2/023003
|
[30] |
Deng Haixiao, Feng Chao. Using off-resonance laser modulation for beam-energy-spread cooling in generation of short-wavelength radiation[J]. Physical Review Letters, 2013, 111: 084801. doi: 10.1103/PhysRevLett.111.084801
|
[31] |
Feng Chao, Deng Haixiao, Wang Dong, et al. Phase-merging enhanced harmonic generation free-electron laser[J]. New Journal of Physics, 2014, 16: 043021. doi: 10.1088/1367-2630/16/4/043021
|
[32] |
Feng Chao, Zhao Zhentang. A storage ring based free-electron laser for generating ultrashort coherent EUV and X-ray radiation[J]. Scientific Reports, 2017, 7: 4724. doi: 10.1038/s41598-017-04962-5
|
[33] |
Wang Xiaofan, Feng Chao, Liu Tao, et al. Angular dispersion enhanced prebunch for seeding ultrashort and coherent EUV and soft X-ray free-electron laser in storage rings[J]. Journal of Synchrotron Radiation, 2019, 26(3): 677-684. doi: 10.1107/S1600577519002674
|
[34] |
Li Changliang, Feng Chao, Jiang Bocheng. Extremely bright coherent synchrotron radiation production in a diffraction-limited storage ring using an angular dispersion-induced microbunching scheme[J]. Physical Review Accelerators and Beams, 2020, 23: 110701. doi: 10.1103/PhysRevAccelBeams.23.110701
|
[35] |
Li Changliang, Jiang Bocheng, Feng Chao, et al. Lattice design for angular dispersion enhanced microbunching in storage rings[J]. Journal of Instrumentation, 2021, 16: P03004. doi: 10.1088/1748-0221/16/03/P03004
|
[36] |
Liu Weihang, Zhou Guanqun, Jiao Yi. Generating femtosecond coherent X-ray pulses in a diffraction-limited storage ring with the echo-enabled harmonic generation scheme[J]. Nuclear Science and Techniques, 2018, 29: 143. doi: 10.1007/s41365-018-0476-z
|
[37] |
Liu Weihang, Wu Yi, Jiao Yi, et al. Generation of two-color polarization-adjustable radiation pulses for storage ring light source[J]. Nuclear Science and Techniques, 2019, 30: 66. doi: 10.1007/s41365-019-0578-2
|
[38] |
Hwang J G, Schiwietz G, Abo-Bakr M, et al. Generation of intense and coherent sub-femtosecond X-ray pulses in electron storage rings[J]. Scientific Reports, 2020, 10: 10093. doi: 10.1038/s41598-020-67027-0
|
[39] |
Huang Nanshun, Deng Haixiao, Liu Bo, et al. Features and futures of X-ray free-electron lasers[J]. The Innovation, 2021, 2: 100097.
|
[40] |
Agapov I. Feasibility of a ring FEL at low emittance storage rings[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 793: 35-40.
|
[41] |
Kim K J, Shvyd’ko Y, Reiche S. A proposal for an X-ray free-electron laser oscillator with an energy-recovery linac[J]. Physical Review Letters, 2008, 100: 244802. doi: 10.1103/PhysRevLett.100.244802
|
[42] |
Huang Zhirong, Ding Yuantao, Schroeder C B. Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator[J]. Physical Review Letters, 2012, 109: 204801. doi: 10.1103/PhysRevLett.109.204801
|
[43] |
Lindberg R, Kim K J, Cai Y, et al. Transverse gradient undulators for a storage ring X-ray FEL oscillator[C]//Proceedings of FEL 2013. New York, NY, USA, 2013: 740-748.
|
[44] |
Agapov I, Chae Y C, Hillert W. Low gain FEL oscillator option for PETRA IV[C]//Proceedings of the 9th International Particle Accelerator Conference. Vancouver, BC, Canada: JACoW Publishing, 2018: 1420-1422.
|
[45] |
Cai Yunhai, Ding Yuantao, Hettel R, et al. An X-ray free electron laser driven by an ultimate storage ring[J]. Synchrotron Radiation News, 2013, 26(3): 39-41. doi: 10.1080/08940886.2013.791216
|
[46] |
Di Mitr S. One way only to synchrotron light sources upgrade?[J]. Journal of Synchrotron Radiation, 2018, 25: 1323-1334. doi: 10.1107/S160057751800810X
|
[47] |
Di Mitri S, Cornacchia M, Diviacco B, et al. Bridging the gap of storage ring light sources and linac-driven free-electron lasers[J]. Physical Review Accelerators and Beams, 2021, 24: 060702. doi: 10.1103/PhysRevAccelBeams.24.060702
|
[48] |
Li Changliang, Feng Chao, Jiang Bocheng, et al. Lattice design for the reversible SSMB[C]//Proceedings of the 10th International Particle Accelerator Conference. Melbourne, Australia: JACoW Publishing, 2019: 1507-1509.
|
[49] |
KEK. KEK report 2020-4[R].
|
[50] |
Jiang Bocheng, Feng Chao, Li Changliang, et al. A synchrotron-based kilowatt-level radiation source for EUV lithography[J]. Scientific Reports, 2022, 12: 3325. doi: 10.1038/s41598-022-07323-z
|
[51] |
Ratner D F, Chao A W. Steady-state microbunching in a storage ring for generating coherent radiation[J]. Physical Review Letters, 2010, 105: 154801. doi: 10.1103/PhysRevLett.105.154801
|
[52] |
Deng X J, Chao A W, Feikes J, et al. Single-particle dynamics of microbunching[J]. Physical Review Accelerators and Beams, 2020, 23: 044002. doi: 10.1103/PhysRevAccelBeams.23.044002
|
[53] |
Deng X J, Chao A W, Huang W H, et al. Courant-Snyder formalism of longitudinal dynamics[J]. Physical Review Accelerators and Beams, 2021, 24: 094001. doi: 10.1103/PhysRevAccelBeams.24.094001
|
[54] |
Deng X J, Huang W H, Li Z Z, et al. Harmonic generation and bunch compression based on transverse-longitudinal coupling[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1019: 165859. doi: 10.1016/j.nima.2021.165859
|
[55] |
Tang Chuanxiang, Deng Xiujie, Huang Wenhui, et al. An overview of the progress on SSMB[C]//Proceedings of the 60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources. Shanghai, China: JACoW Publishing, 2018: 166-170.
|
[56] |
Zhang Y, Deng X J, Pan Z L, et al. Ultralow longitudinal emittance storage rings[J]. Physical Review Accelerators and Beams, 2021, 24: 090701. doi: 10.1103/PhysRevAccelBeams.24.090701
|
[57] |
Deng Xiujie, Chao A, Feikes J, et al. Experimental demonstration of the mechanism of steady-state microbunching[J]. Nature, 2021, 590(7847): 576-579. doi: 10.1038/s41586-021-03203-0
|