Research advances in ultrafast X-ray free-electron lasers
-
摘要:
现代光源的发展不断推动着人们从更深层次上理解物质的基本结构和动力学行为。X射线自由电子激光作为最先进的光源,其超高的峰值功率、超短的脉冲长度和优良的相干性,为人们以原子级时空分辨率探测和操控物质中的超快过程提供了可能。目前全世界已有多个X射线自由电子激光装置建成并投入使用,在原子分子物理、化学、生命科学、材料科学等各学科应用中都显示出了重要价值。同时大量的研究工作也集中于继续提高X射线自由电子激光的性能,包括把脉冲持续时间从fs量级进一步缩短至as量级,这将为超快科学的发展带来新突破。以超快脉冲产生为主线,综述了近年来超快X射线自由电子激光产生方案的研究进展,从产生原理、方案特性、最新成果等方面介绍了各类产生方案,总结对比了各方案的优缺点,最后对超快X射线自由电子激光的未来发展方向进行了展望。
Abstract:Advances in modern light sources continue to improve our understanding of the fundamental structure and microscopic dynamics of matter. As the most advanced light source, X-ray free-electron lasers provide the brightest X-rays with ultrahigh peak power, ultrashort pulse length, and excellent coherence, making it possible to detect and manipulate ultrafast processes in atomic and molecular systems. X-ray free-electron laser facilities in operation worldwide have shown great value in the application fields of physics, chemistry, biology, material science, etc. Furthermore, many efforts have focused on improving the performance of X-ray free-electron lasers, including reducing the pulse duration from femtosecond to attosecond for opening new frontiers in ultrafast science. This paper mainly reviews the recent progress of ultrafast X-ray free-electron lasers and summarizes various schemes in terms of their generation mechanisms, unique properties and latest results. Finally, it predicts the future development of ultrafast X-ray free-electron lasers.
-
Key words:
- X-ray /
- free-electron laser /
- ultrafast optics /
- attosecond pulse
-
图 12 各类超快XFEL脉冲产生方案比较:图中蓝色标记表示产生硬X射线的方案,品红色标记表示产生软X射线的方案,带有橙色实心点标记的表示已经在FEL装置上成功验证的实验结果,蓝色阴影区域为当前装置能够达到的脉冲宽度和峰值功率范围
Figure 12. Comparison of various ultrafast XFEL pulse generation schemes. The blue markers represent hard X-ray generation schemes and magenta markers represent soft X-ray generation schemes. The orange filled markers indicate the schemes have been validated on FEL facilities. The shaded blue area indicates the parameter space that can be achieved currently
表 1 图12中各数据点所代表方案的主要参数值
Table 1. Main parameters of the schemes presented in Fig.12
scheme pulse duration (FWHM)/as pulse peak power/GW wavelength/photon energy reference energy modulation 100 0.005 1 nm [29] 300 1 0.1 nm [28] 300 100 0.15 nm [30] 200 100 0.15 nm [31] 400 100 900 eV/ 1100 eV [40] 400 1 000 1.22 nm/ 2.48 nm [33] current modulation 250 40 0.15 nm [42] 100 2.3 0.15 nm [43] 146 58 0.1 nm [45] 210 25 0.15 nm [46] 280 100 905 eV [47] 250 120 940 eV [50] 1 000 39 560 eV [51] emittance spoiling 2 000 10 8 keV [52] 3 800 2.5 1.1 nm [55] 420 30 5.6 keV [56] 10 000 30 1.5 keV [59] orbit control 29 000 12 0.15 nm [60] 115 100 0.15 nm [61] 5 000 140 670 eV [68] low charge bunch compression 300 10 0.15 nm [72] 2 000 20 1.5 nm [73] 2 600 10 1 keV [74] 140 35 0.15 nm [77] 200 50 5.6 keV [78] 326 4.3 7.36 keV [79] mode-locked FEL 23 6 0.15 nm [80] 1.5 1.5 0.1 nm [81] cascade amplification 228 1 000 0.1 nm [82] 500 1 000 0.1 nm [83] 53 6 600 10 keV [84] 100 300 0.1 nm [85] 80 1 700 0.15 nm [86] 260 550 1.5 nm [87] chirped microbunching 46 1.2 8.6 nm [88] 表 2 各类超快XFEL脉冲产生方案特性汇总
Table 2. A summary of various ultrafast XFEL pulse generation schemes
scheme spectral
rangeisolated pulse/
pulse trainsynchronization
to optical laserhigh repetition
frequency (MHz)hardware requirements
and feasibilityenergy modulation all (soft X-ray to hard X-ray) isolated/train yes no (self-modulation method-yes) high power external laser, need to add modulators current modulation all isolated/train yes no (self-modulation method-yes) high power external laser, need to add modulators emittance
spoilingslotted foil all isolated no no non-invasive hardware, can be used at any facilities optical shaping yes yes no additional hardware, can be used at any facilities orbit control RF deflector all isolated no yes no additional hardware, can be used at any facilities laser modulation yes no high power external laser, need to add modulators transverse wakefield no yes add dechirper before the undulator dispersion based no yes no additional hardware, can be used at any facilities low charge bunch compression all isolated no yes no additional hardware, can be used at any facilities cascade amplification
(based on slotted foil, orbit control, ESASE, the specific attributes are the same as above)all isolated/train —— —— add chicane between undulators, need a dedicated line mode-locked FEL all train yes no high power external laser and chicanes, need a dedicated line chirped microbunching soft X-ray isolated yes —— seed laser and modulators,need a dedicated line -
[1] Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 2014, 21(5): 843-855. doi: 10.1107/S1600577514011515 [2] Tavares P F, Leemann S C, Sjöström M, et al. The MAX IV storage ring project[J]. Journal of Synchrotron Radiation, 2014, 21(5): 862-877. doi: 10.1107/S1600577514011503 [3] Jiao Yi, Xu Gang, Cui Xiaohao, et al. The HEPS project[J]. Journal of Synchrotron Radiation, 2018, 25(6): 1611-1618. doi: 10.1107/S1600577518012110 [4] Öström H, Öberg H, Xin H, et al. Probing the transition state region in catalytic CO oxidation on Ru[J]. Science, 2015, 347(6225): 978-982. doi: 10.1126/science.1261747 [5] Fukuzawa H, Son S K, Motomura K, et al. Deep inner-shell multiphoton ionization by intense X-ray free-electron laser pulses[J]. Physical Review Letters, 2013, 110: 173005. doi: 10.1103/PhysRevLett.110.173005 [6] Chapman H N, Barty A, Bogan M J, et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser[J]. Nature Physics, 2006, 2(12): 839-843. doi: 10.1038/nphys461 [7] Lünnemann S, Kuleff A I, Cederbaum L S. Charge migration following ionization in systems with chromophore-donor and amine-acceptor sites[J]. The Journal of Chemical Physics, 2008, 129: 104305. doi: 10.1063/1.2970088 [8] Goulielmakis E, Loh Z H, Wirth A, et al. Real-time observation of valence electron motion[J]. Nature, 2010, 466(7307): 739-743. doi: 10.1038/nature09212 [9] Li X F, L’Huillier A, Ferray M, et al. Multiple-harmonic generation in rare gases at high laser intensity[J]. Physical Review A, 1989, 39(11): 5751-5761. doi: 10.1103/PhysRevA.39.5751 [10] Gaumnitz T, Jain A, Pertot Y, et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver[J]. Optics Express, 2017, 25(22): 27506-27518. doi: 10.1364/OE.25.027506 [11] Li Jie, Ren Xiaoming, Yin Yanchun, et al. 53-attosecond X-ray pulses reach the carbon K-edge[J]. Nature Communications, 2017, 8: 186. [12] Sansone G, Poletto L, Nisoli M. High-energy attosecond light sources[J]. Nature Photonics, 2011, 5(11): 655-663. doi: 10.1038/nphoton.2011.167 [13] Popmintchev T, Chen Mingchang, Popmintchev D, et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 2012, 336(6086): 1287-1291. doi: 10.1126/science.1218497 [14] 金光齐, 黄志戎, 瑞安·林德伯格. 同步辐射与自由电子激光——相干X射线产生原理[M]. 黄森林, 刘克新, 译. 北京: 北京大学出版社, 2018Kim K J, Huang Zhirong, Lindberg R. Synchrotron radiation and free-electron lasers: principles of coherent X-ray generation[M]. Huang Senlin, Liu Kexin, trans. Beijing: Peking University Press, 2018 [15] Ackermann W, Asova G, Ayvazyan V, et al. Operation of a free-electron laser from the extreme ultraviolet to the water window[J]. Nature Photonics, 2007, 1(6): 336-342. doi: 10.1038/nphoton.2007.76 [16] Emma P, Akre R, Arthur J, et al. First lasing and operation of an ångstrom-wavelength free-electron laser[J]. Nature Photonics, 2010, 4(9): 641-647. doi: 10.1038/nphoton.2010.176 [17] Ishikawa T, Aoyagi H, Asaka T, et al. A compact X-ray free-electron laser emitting in the sub-ångström region[J]. Nature Photonics, 2012, 6(8): 540-544. doi: 10.1038/nphoton.2012.141 [18] Allaria E, Appio R, Badano L, et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet[J]. Nature Photonics, 2012, 6(10): 699-704. doi: 10.1038/nphoton.2012.233 [19] Allaria E, Castronovo D, Cinquegrana P, et al. Two-stage seeded soft-X-ray free-electron laser[J]. Nature Photonics, 2013, 7(11): 913-918. doi: 10.1038/nphoton.2013.277 [20] Kang H S, Min C K, Heo H, et al. Hard X-ray free-electron laser with femtosecond-scale timing jitter[J]. Nature Photonics, 2017, 11(11): 708-713. doi: 10.1038/s41566-017-0029-8 [21] Decking W, Abeghyan S, Abramian P, et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator[J]. Nature Photonics, 2020, 14(6): 391-397. doi: 10.1038/s41566-020-0607-z [22] Prat E, Abela R, Aiba M, et al. A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam[J]. Nature Photonics, 2020, 14(12): 748-754. doi: 10.1038/s41566-020-00712-8 [23] Zhao Zhentang, Wang Dong, Gu Qiang, et al. SXFEL: a soft X-ray free electron laser in China[J]. Synchrotron Radiation News, 2017, 30(6): 29-33. doi: 10.1080/08940886.2017.1386997 [24] Galayda J N. The linac coherent light source-II project[C]//Proceedings of the 5th International Particle Accelerator Conference (IPAC 2014). 2014: 935-937. [25] Zhao Zhentang, Wang Dong, Yang Ziyan, et al. SCLF: an 8-GeV CW SCRF linac-based X-ray FEL facility in Shanghai[C]//Proceedings of the 38th International Free Electron Laser Conference (FEL 2017). 2017: 182-184. [26] Bonifacio R, De Salvo L, Pierini P, et al. Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise[J]. Physical Review Letters, 1994, 73(1): 70-73. doi: 10.1103/PhysRevLett.73.70 [27] Coffee R N, Cryan J P, Duris J, et al. Development of ultrafast capabilities for X-ray free-electron lasers at the linac coherent light source[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377: 20180386. doi: 10.1098/rsta.2018.0386 [28] Saldin E L, Schneidmiller E A, Yurkov M V. Terawatt-scale sub-10-fs laser technology – key to generation of GW-level attosecond pulses in X-ray free electron laser[J]. Optics Communications, 2004, 237(1/3): 153-164. [29] Zholents A A, Fawley W M. Proposal for intense attosecond radiation from an X-ray free-electron laser[J]. Physical Review Letters, 2004, 92: 224801. doi: 10.1103/PhysRevLett.92.224801 [30] Saldin E L, Schneidmiller E A, Yurkov M V. A new technique to generate 100 GW-level attosecond X-ray pulses from the X-ray SASE FELs[J]. Optics Communications, 2004, 239(1/3): 161-172. [31] Saldin E L, Schneidmiller E A, Yurkov M V. Self-amplified spontaneous emission FEL with energy-chirped electron beam and its application for generation of attosecond X-ray pulses[J]. Physical Review Accelerators and Beams, 2006, 9: 050702. doi: 10.1103/PhysRevSTAB.9.050702 [32] Fawley W M. Production of ultrashort FEL XUV pulses via a reverse undulator taper[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 593(1/2): 111-115. [33] Duris J, Zhang Z, MacArthur J, et al. Superradiant amplification in a chirped-tapered X-ray free-electron laser[J]. Physical Review Accelerators and Beams, 2020, 23: 020702. doi: 10.1103/PhysRevAccelBeams.23.020702 [34] MacArthur J P, Duris J, Zhang Zhen, et al. Phase-stable self-modulation of an electron beam in a magnetic wiggler[J]. Physical Review Letters, 2019, 123: 214801. doi: 10.1103/PhysRevLett.123.214801 [35] Bonifacio R, McNeil B W J, Pierini P. Superradiance in the high-gain free-electron laser[J]. Physical Review A, 1989, 40(8): 4467-4475. doi: 10.1103/PhysRevA.40.4467 [36] Bonifacio R, Piovella N, McNeil B W J. Superradiant evolution of radiation pulses in a free-electron laser[J]. Physical Review A, 1991, 44(6): R3441-R3444. doi: 10.1103/PhysRevA.44.R3441 [37] Lutman A A, Coffee R, Ding Yuantao, et al. Experimental demonstration of femtosecond two-color X-ray free-electron lasers[J]. Physical Review Letters, 2013, 110: 134801. doi: 10.1103/PhysRevLett.110.134801 [38] Hara T, Inubushi Y, Katayama T, et al. Two-colour hard X-ray free-electron laser with wide tunability[J]. Nature Communications, 2013, 4: 2919. doi: 10.1038/ncomms3919 [39] Lutman A A, Maxwell T J, MacArthur J P, et al. Fresh-slice multicolour X-ray free-electron lasers[J]. Nature Photonics, 2016, 10(11): 745-750. doi: 10.1038/nphoton.2016.201 [40] Zhang Zhen, Duris J, MacArthur J P, et al. Double chirp-taper X-ray free-electron laser for attosecond pump-probe experiments[J]. Physical Review Accelerators and Beams, 2019, 22: 050701. doi: 10.1103/PhysRevAccelBeams.22.050701 [41] Zholents A A. Method of an enhanced self-amplified spontaneous emission for X-ray free electron lasers[J]. Physical Review Accelerators and Beams, 2005, 8: 040701. doi: 10.1103/PhysRevSTAB.8.040701 [42] Zholents A A, Penn G. Obtaining attosecond X-ray pulses using a self-amplified spontaneous emission free electron laser[J]. Physical Review Accelerators and Beams, 2005, 8: 050704. doi: 10.1103/PhysRevSTAB.8.050704 [43] Ding Yuantao, Huang Zhirong, Ratner D, et al. Generation of attosecond X-ray pulses with a multicycle two-color enhanced self-amplified spontaneous emission scheme[J]. Physical Review Accelerators and Beams, 2009, 12: 060703. doi: 10.1103/PhysRevSTAB.12.060703 [44] Kumar S, Kang H S, Kim D E. Generation of isolated single attosecond hard X-ray pulse in enhanced self-amplified spontaneous emission scheme[J]. Optics Express, 2011, 19(8): 7537-7545. doi: 10.1364/OE.19.007537 [45] Kumar S, Kang H S, Kim D E. For the generation of an intense isolated pulse in hard X-ray region using X-ray free electron laser[J]. Laser and Particle Beams, 2012, 30(3): 397-406. doi: 10.1017/S0263034612000237 [46] Qi Zheng, Feng Chao, Deng Haixiao, et al. Generating attosecond X-ray pulses through an angular dispersion enhanced self-amplified spontaneous emission free electron laser[J]. Physical Review Accelerators and Beams, 2018, 21: 120703. doi: 10.1103/PhysRevAccelBeams.21.120703 [47] Duris J, Li Siqi, Driver T, et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser[J]. Nature Photonics, 2020, 14(1): 30-36. doi: 10.1038/s41566-019-0549-5 [48] Li Siqi, Guo Zhaoheng, Coffee R N, et al. Characterizing isolated attosecond pulses with angular streaking[J]. Optics Express, 2018, 26(4): 4531-4547. doi: 10.1364/OE.26.004531 [49] Hartmann N, Hartmann G, Heider R, et al. Attosecond time–energy structure of X-ray free-electron laser pulses[J]. Nature Photonics, 2018, 12(4): 215-220. doi: 10.1038/s41566-018-0107-6 [50] Zhang Zhen, Duris J, MacArthur J P, et al. Experimental demonstration of enhanced self-amplified spontaneous emission by photocathode temporal shaping and self-compression in a magnetic wiggler[J]. New Journal of Physics, 2020, 22: 083030. doi: 10.1088/1367-2630/aba14c [51] Duris J P, MacArthur J P, Glownia J M, et al. Controllable X-ray pulse trains from enhanced self-amplified spontaneous emission[J]. Physical Review Letters, 2021, 126: 104802. doi: 10.1103/PhysRevLett.126.104802 [52] Emma P, Bane K, Cornacchia M, et al. Femtosecond and subfemtosecond X-ray pulses from a self-amplified spontaneous-emission-based free-electron laser[J]. Physical Review Letters, 2004, 92: 0748011. [53] Serkez S, Decker F J, Cho M H, et al. Generating trains of attosecond pulses with a free-electron laser[C]//Proceedings of FEL 2019. 2019: 692-694. [54] Ding Yuantao, Behrens C, Emma P, et al. Femtosecond X-ray pulse temporal characterization in free-electron lasers using a transverse deflector[J]. Physical Review Special Topics - Accelerators and Beams, 2011, 14: 120701. doi: 10.1103/PhysRevSTAB.14.120701 [55] Ding Yuantao, Behrens C, Coffee R, et al. Generating femtosecond X-ray pulses using an emittance-spoiling foil in free-electron lasers[J]. Applied Physics Letters, 2015, 107: 191104. doi: 10.1063/1.4935429 [56] Marinelli A, Macarthur J, Emma P, et al. Experimental demonstration of a single-spike hard-X-ray free-electron laser starting from noise[J]. Applied Physics Letters, 2017, 111: 151101. doi: 10.1063/1.4990716 [57] Huang Zhirong, Borland M, Emma P, et al. Suppression of microbunching instability in the linac coherent light source[J]. Physical Review Accelerators and Beams, 2004, 7: 074401. doi: 10.1103/PhysRevSTAB.7.074401 [58] Huang Zhirong, Brachmann A, Decker F J, et al. Measurements of the linac coherent light source laser heater and its impact on the X-ray free-electron laser performance[J]. Physical Review Special Topics. Accelerators and Beams, 2010, 13: 020703. doi: 10.1103/PhysRevSTAB.13.020703 [59] Marinelli A, Coffee R, Vetter S, et al. Optical shaping of X-ray free-electron lasers[J]. Physical Review Letters, 2016, 116: 254801. doi: 10.1103/PhysRevLett.116.254801 [60] Emma P, Huang Zhirong. Femtosecond X-ray pulses from a spatially chirped electron bunch in a SASE FEL[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 528(1/2): 458-462. [61] Zholents A A, Zolotorev M S. Attosecond X-ray pulses produced by ultra short transverse slicing via laser electron beam interaction[J]. New Journal of Physics, 2008, 10: 025005. doi: 10.1088/1367-2630/10/2/025005 [62] Bane K L F, Stupakov G. Corrugated pipe as a beam dechirper[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 690: 106-110. [63] Antipov S, Baturin S, Jing C, et al. Experimental demonstration of energy-chirp compensation by a tunable dielectric-based structure[J]. Physical Review Letters, 2014, 112: 114801. doi: 10.1103/PhysRevLett.112.114801 [64] Deng Haixiao, Zhang Meng, Feng Chao, et al. Experimental demonstration of longitudinal beam phase-space linearizer in a free-electron laser facility by corrugated structures[J]. Physical Review Letters, 2014, 113: 254802. doi: 10.1103/PhysRevLett.113.254802 [65] Emma P, Venturini M, Bane K L F, et al. Experimental demonstration of energy-chirp control in relativistic electron bunches using a corrugated pipe[J]. Physical Review Letters, 2014, 112: 034801. doi: 10.1103/PhysRevLett.112.034801 [66] Zhang Zhen, Bane K, Ding Yuantao, et al. Electron beam energy chirp control with a rectangular corrugated structure at the Linac Coherent Light Source[J]. Physical Review Accelerators and Beams, 2015, 18: 010702. doi: 10.1103/PhysRevSTAB.18.010702 [67] Zemella J, Bane K, Fisher A, et al. Measurements of wake-induced electron beam deflection in a dechirper at the Linac Coherent Light Source[J]. Physical Review Accelerators and Beams, 2017, 20: 104403. doi: 10.1103/PhysRevAccelBeams.20.104403 [68] Lutman A A, Guetg M W, Maxwell T J, et al. High-power femtosecond soft X rays from fresh-slice multistage free-electron lasers[J]. Physical Review Letters, 2018, 120: 264801. doi: 10.1103/PhysRevLett.120.264801 [69] Prat E, Aiba M. General and efficient dispersion-based measurement of beam slice parameters[J]. Physical Review Accelerators and Beams, 2014, 17: 032801. doi: 10.1103/PhysRevSTAB.17.032801 [70] Prat E, Bettoni S, Reiche S. Enhanced X-ray free-electron-laser performance from tilted electron beams[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 865: 1-8. [71] Guetg M W, Lutman A A, Ding Yuantao, et al. Dispersion-based fresh-slice scheme for free-electron lasers[J]. Physical Review Letters, 2018, 120: 264802. doi: 10.1103/PhysRevLett.120.264802 [72] Reiche S, Musumeci P, Pellegrini C, et al. Development of ultra-short pulse, single coherent spike for SASE X-ray FELs[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 593(1/2): 45-48. [73] Ding Yuantao, Brachmann A, Decker F J, et al. Measurements and simulations of ultralow emittance and ultrashort electron beams in the linac coherent light source[J]. Physical Review Letters, 2009, 102: 254801. doi: 10.1103/PhysRevLett.102.254801 [74] Behrens C, Decker F J, Ding Yuantao, et al. Few-femtosecond time-resolved measurements of X-ray free-electron lasers[J]. Nature Communications, 2014, 5: 3762. doi: 10.1038/ncomms4762 [75] Beutner B, Reiche S, Scherrer P. Operation modes and longitudinal layout for the SwissFEL hard X-ray facility[C]//Proceedings of FEL 2011. 2011: 235-238. [76] Marchetti B, Krasilnikov M, Stephan F, et al. Compression of a 20 pC e-bunch at the European XFEL for single spike operation[J]. Physics Procedia, 2014, 52: 80-89. doi: 10.1016/j.phpro.2014.06.013 [77] Huang Senlin, Ding Yuantao, Huang Zhirong, et al. Generation of stable subfemtosecond hard X-ray pulses with optimized nonlinear bunch compression[J]. Physical Review Accelerators and Beams, 2014, 17: 120703. doi: 10.1103/PhysRevSTAB.17.120703 [78] Huang Senlin, Ding Yuantao, Feng Yiping, et al. Generating single-spike hard X-ray pulses with nonlinear bunch compression in free-electron lasers[J]. Physical Review Letters, 2017, 119: 154801. doi: 10.1103/PhysRevLett.119.154801 [79] Malyzhenkov A, Arbelo Y P, Craievich P, et al. Single- and two-color attosecond hard X-ray free-electron laser pulses with nonlinear compression[J]. Physical Review Research, 2020, 2: 042018. doi: 10.1103/PhysRevResearch.2.042018 [80] Thompson N R, McNeil B W J. Mode locking in a free-electron laser amplifier[J]. Physical Review Letters, 2008, 100: 203901. doi: 10.1103/PhysRevLett.100.203901 [81] Dunning D J, McNeil B W J, Thompson N R. Few-cycle pulse generation in an X-ray free-electron laser[J]. Physical Review Letters, 2013, 110: 104801. doi: 10.1103/PhysRevLett.110.104801 [82] Prat E, Reiche S. Simple method to generate terawatt-attosecond X-ray free-electron-laser pulses[J]. Physical Review Letters, 2015, 114: 244801. doi: 10.1103/PhysRevLett.114.244801 [83] Prat E, Löhl F, Reiche S. Efficient generation of short and high-power X-ray free-electron-laser pulses based on superradiance with a transversely tilted beam[J]. Physical Review Accelerators and Beams, 2015, 18: 100701. doi: 10.1103/PhysRevSTAB.18.100701 [84] Tanaka T. Proposal for a pulse-compression scheme in X-ray free-electron lasers to generate a multiterawatt, attosecond X-ray pulse[J]. Physical Review Letters, 2013, 110: 084801. doi: 10.1103/PhysRevLett.110.084801 [85] Kumar S, Parc Y W, Landsman A S, et al. Temporally-coherent terawatt attosecond XFEL synchronized with a few cycle laser[J]. Scientific Reports, 2016, 6: 37700. doi: 10.1038/srep37700 [86] Wang Zhen, Feng Chao, Zhao Zhentang. Generating isolated terawatt-attosecond X-ray pulses via a chirped-laser-enhanced high-gain free-electron laser[J]. Physical Review Accelerators and Beams, 2017, 20: 040701. doi: 10.1103/PhysRevAccelBeams.20.040701 [87] Huang Senlin, Ding Yuantao, Huang Zhirong, et al. Generation of subterawatt-attosecond pulses in a soft X-ray free-electron laser[J]. Physical Review Accelerators and Beams, 2016, 19: 080702. doi: 10.1103/PhysRevAccelBeams.19.080702 [88] Tanaka T. Proposal to generate an isolated monocycle X-ray pulse by counteracting the slippage effect in free-electron lasers[J]. Physical Review Letters, 2015, 114: 044801. doi: 10.1103/PhysRevLett.114.044801 [89] Schulz S, Grguraš I, Behrens C, et al. Femtosecond all-optical synchronization of an X-ray free-electron laser[J]. Nature Communications, 2015, 6: 5938. doi: 10.1038/ncomms6938 [90] Hemsing E, Knyazik A, Dunning M, et al. Coherent optical vortices from relativistic electron beams[J]. Nature Physics, 2013, 9(9): 549-553. doi: 10.1038/nphys2712 [91] Ribič P R, Rösner B, Gauthier D, et al. Extreme-ultraviolet vortices from a free-electron laser[J]. Physical Review X, 2017, 7: 031036. [92] Hemsing E. Coherent photons with angular momentum in a helical afterburner[J]. Physical Review Accelerators and Beams, 2020, 23: 020703. doi: 10.1103/PhysRevAccelBeams.23.020703 [93] Tibai Z, Tóth G, Mechler M I, et al. Proposal for carrier-envelope-phase stable single-cycle attosecond pulse generation in the extreme-ultraviolet range[J]. Physical Review Letters, 2014, 113: 104801. doi: 10.1103/PhysRevLett.113.104801 [94] Peng Liangyou, Starace A F. Attosecond pulse carrier-envelope phase effects on ionized electron momentum and energy distributions[J]. Physical Review A, 2007, 76: 043401. doi: 10.1103/PhysRevA.76.043401