Effect of 355 nm and 1064 nm dual-wavelength conditioning on the bulk damage properties of DKDP crystal
-
摘要: 为了研究3ω预处理、3ω和1ω同时辐照预处理情况后DKDP晶体的3ω损伤特性,建立了双波长预处理和损伤测试实验系统,重点研究了双波长同时辐照预处理情况下1ω能量密度对预处理效果的影响,分析了双波长同时辐照预处理过程中的能量耦合机制。研究结果表明:双波长同时辐照预处理在提升DKDP晶体抗3ω激光损伤性能方面的效果明显好于单波长预处理;在双波长同时辐照预处理情况下,远低于自身预处理阈值的1ω参与了预处理作用过程;在相同3ω能量密度、能量阶梯的预处理策略下,1ω能量密度存在最佳值。Abstract: To study the 3ω damage characteristics of DKDP crystals after 3ω conditioning, 3ω and 1ω conditioning at the same time, a dual-wavelength conditioning and damage test experimental system was established. The conditioning effects of 1ω energy density under dual wavelength irradiation were studied emphatically. The energy coupling mechanism in the conditioning process of dual-wavelength irradiation was analyzed. Research results show that the effect of dual-wavelength conditioning is significantly better than that of single wavelength. In the case of dual-wavelength simultaneous irradiation conditioning, the 1ω which is far below the threshold value of its own conditioning participates in the conditioning. Under the same conditioning strategy of 3ω energy density and energy gradient, there is an optimal value of 1ω energy density.
-
表 1 双波长预处理参数
Table 1. Dual-wavelength conditioning parameters
group A fluence/(J·cm−2) group B fluence/(J·cm−2) 1ω 3ω 1ω 3ω A1 0 7.4, 9.2, 11.0, 12.8, 14.6 B1 0 7.4, 9.2, 11.0 A2 2.6 7.4, 9.2, 11.0, 12.8, 14.6 B2 7.9 7.4, 9.2, 11.0 A3 5.3 7.4, 9.2, 11.0, 12.8, 14.6 B3 10.6 7.4, 9.2, 11.0 A4 7.9 7.4, 9.2, 11.0, 12.8, 14.6 B4 15.9 7.4, 9.2, 11.0 A5 10.6 7.4, 9.2, 11.0, 12.8, 14.6 — — — 表 2 不同预处理方式下3ω的最大零概率损伤阈值和平均损伤点密度
Table 2. Maximum zero probability damage threshold and average damage pinpoints density of 3ω under different pre-exposure methods
group area initial bulk damage
threshold/(J·cm−2)percentage/% mean pinpoints density/mm3
(3ω, about 33.6 J/cm2)without conditioning — 13.7 0 25 A A1 16.6 21.2 10 A2 18.2 32.8 8 A3 18.8 37.2 4 A4 19.9 45.3 1 B B1 16.3 19.1 18 B2 19.3 40.9 4 B3 18.3 33.6 5 B4 17.5 27.7 11 表 3 预处理参数与b的关系表
Table 3. Relationship between conditioning parameters and b
area conditioning methods 1ω energy density/(J·cm−2) b without pre-exposure — −13.752 A A1 3ω 0 −16.664 A2 3ω+1ω 2.6 −18.062 A3 5.3 −18.934 A4 7.9 −19.844 B B1 3ω 0 −16.001 B2 3ω+1ω 7.9 −19.140 B3 10.6 −18.196 B4 15.9 −17.291 -
[1] Burnham A K, Hackel L A, Wegner P J, et al. Improving 351-nm damage performance of large-aperture fused silica and DKDP optics[C]//Proceedings of SPIE 4679, Laser-Induced Damage in Optical Materials. 2002: 173-185. [2] Carr C W, Auerbach J M. Effect of multiple wavelengths on laser-induced damage in KH(2-x)DxPO4 crystals[J]. Optics Letters, 2006, 31(5): 595-597. doi: 10.1364/OL.31.000595 [3] De Yoreo J J, Burnham A K, Whitman P K. Developing KH2PO4 and KD2PO4 crystals for the world's most power laser[J]. International Materials Reviews, 2002, 47(3): 113-152. doi: 10.1179/095066001225001085 [4] Krol H, Gallais L, Grèzes-Besset C, et al. Investigation of nanoprecursors threshold distribution in laser-damage testing[J]. Optics Communications, 2005, 256(1/3): 184-189. [5] Carr C W, Feit M D, Muyco J J, et al. Effect on scattering of complex morphology of DKDP bulk damage sites[C]//Proceedings of SPIE, Laser-Induced Damage in Optical Materials. 2004: 532-539. [6] Giuliano C R. Laser-induced damage to transparent dielectric materials[J]. Applied Physics Letters, 1964, 5(7): 137-139. doi: 10.1063/1.1754087 [7] Bloembergen N. Laser-induced electric breakdown in solids[J]. IEEE Journal of Quantum Electronics, 1974, 10(3): 375-386. doi: 10.1109/JQE.1974.1068132 [8] Hu Guohang, Zhao Yuanan, Li Dawei, et al. Wavelength dependence of laser-induced bulk damage morphology in KDP crystal: determination of the damage formation mechanism[J]. Chinese Physics Letters, 2012, 29: 037801. doi: 10.1088/0256-307X/29/3/037801 [9] Hu Guohang, Qi Hongji, He Hongbo, et al. 3D morphology of laser-induced bulk damage at 355 and 1064nm in KDP crystal with different orientations[C]//Proceedings of SPIE, Laser-Induced Damage in Optical Materials. 2010. [10] Li Yaguo, Zhu Dexing, Zhang Qinghua, et al. Threshold fluences for conditioning, fatigue and damage effects of DKDP crystals[J]. Optical Materials, 2019, 91: 199-204. doi: 10.1016/j.optmat.2019.03.028 [11] Feit M D, Rubenchik A M. Implications of nanoabsorber initiators for damage probability curves, pulselength scaling, and laser conditioning[C]//Proceedings of SPIE, Laser-Induced Damage in Optical Materials. 2003: 74-82. [12] DeMange P, Negres R A, Rubenchik A M, et al. The energy coupling efficiency of multiwavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals[J]. Journal of Applied Physics, 2008, 103: 083122. doi: 10.1063/1.2907992 [13] Reyné S, Loiseau M, Duchateau G, et al. Toward a better understanding of multi-wavelength effects on KDP crystals[C]//Proceedings of SPIE, Damage to VUV, EUV, and X-Ray Optics II. 2009: 73610Z. [14] 吴金明, 赵元安, 汪琳, 等. 1064 nm激光和355 nm激光同时辐照DKDP晶体的耦合预处理效应[J]. 中国激光, 2019, 46:0501003. (Wu Jinming, Zhao Yuan’an, Wang Lin, et al. Coupling conditioning effect of DKDP crystals under simultaneous irradiation by 1064 nm laser and 355 nm laser[J]. Chinese Journal of Lasers, 2019, 46: 0501003 doi: 10.3788/CJL201946.0501003 [15] 徐子媛, 王岳亮, 赵元安, 等. 不同脉冲宽度355 nm波长激光诱导DKDP晶体损伤特性[J]. 强激光与粒子束, 2019, 31:091004. (Xu Ziyuan, Wang Yueliang, Zhao Yuan’an, et al. Laser damage behaviors of DKDP crystals dominated by laser pulse duration[J]. High Power Laser and Particle Beams, 2019, 31: 091004 doi: 10.11884/HPLPB201931.190164 [16] DeMange P P. Laser-induced defect reactions governing the damage performance of KDP and DKDP[D]. Davis: University of California, 2006: 49-59. [17] 刘志超, 许乔, 雷向阳, 等. 大口径氘化磷酸二氢钾晶体离线亚纳秒激光预处理技术[J]. 物理学报, 2021, 70:074208. (Liu Zhichao, Xu Qiao, Lei Xiangyang, et al. Off-line sub-nanosecond laser conditioning on large aperture deuterated potassium dihydrogen phosphate crystal[J]. Acta Physica Sinica, 2021, 70: 074208 doi: 10.7498/aps.70.20201524 [18] Hicks D G, Boehly T R, Eggert J H, et al. Dissociation of liquid silica at high pressures and temperatures[J]. Physical Review Letters, 2006, 97: 025502. doi: 10.1103/PhysRevLett.97.025502 [19] Carr C W, Bude J D, DeMange P. Laser-supported solid-state absorption fronts in silica[J]. Physical Review B, 2010, 82: 184304. doi: 10.1103/PhysRevB.82.184304 [20] Li Ting, Zhao Yuanan, Lian Yafei, et al. Optimizing sub-nanosecond laser conditioning of DKDP crystals by varying the temporal shape of the pulse[J]. Optics Express, 2021, 29(22): 35993-36004. doi: 10.1364/OE.441918