留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

355 nm和1064 nm双波长预处理对DKDP晶体损伤性质的影响

李云飞 史晋芳 邱荣 余健 郭德成 周磊

李云飞, 史晋芳, 邱荣, 等. 355 nm和1064 nm双波长预处理对DKDP晶体损伤性质的影响[J]. 强激光与粒子束, 2022, 34: 061003. doi: 10.11884/HPLPB202234.220060
引用本文: 李云飞, 史晋芳, 邱荣, 等. 355 nm和1064 nm双波长预处理对DKDP晶体损伤性质的影响[J]. 强激光与粒子束, 2022, 34: 061003. doi: 10.11884/HPLPB202234.220060
Li Yunfei, Shi Jinfang, Qiu Rong, et al. Effect of 355 nm and 1064 nm dual-wavelength conditioning on the bulk damage properties of DKDP crystal[J]. High Power Laser and Particle Beams, 2022, 34: 061003. doi: 10.11884/HPLPB202234.220060
Citation: Li Yunfei, Shi Jinfang, Qiu Rong, et al. Effect of 355 nm and 1064 nm dual-wavelength conditioning on the bulk damage properties of DKDP crystal[J]. High Power Laser and Particle Beams, 2022, 34: 061003. doi: 10.11884/HPLPB202234.220060

355 nm和1064 nm双波长预处理对DKDP晶体损伤性质的影响

doi: 10.11884/HPLPB202234.220060
基金项目: 国家自然科学基金委员会与中国工程物理研究院联合基金项目(U1530109);国家自然科学基金项目(11972313)
详细信息
    作者简介:

    李云飞,1181279434@qq.com

    通讯作者:

    史晋芳,603071939@qq.com

  • 中图分类号: O731

Effect of 355 nm and 1064 nm dual-wavelength conditioning on the bulk damage properties of DKDP crystal

  • 摘要: 为了研究3ω预处理、3ω和1ω同时辐照预处理情况后DKDP晶体的3ω损伤特性,建立了双波长预处理和损伤测试实验系统,重点研究了双波长同时辐照预处理情况下1ω能量密度对预处理效果的影响,分析了双波长同时辐照预处理过程中的能量耦合机制。研究结果表明:双波长同时辐照预处理在提升DKDP晶体抗3ω激光损伤性能方面的效果明显好于单波长预处理;在双波长同时辐照预处理情况下,远低于自身预处理阈值的1ω参与了预处理作用过程;在相同3ω能量密度、能量阶梯的预处理策略下,1ω能量密度存在最佳值。
  • 图  1  双波长预处理和损伤测试实验系统图

    Figure  1.  Experimental system diagram of dual-wavelength conditioning and damage test

    图  2  DKDP晶体材料

    Figure  2.  DKDP crystal material

    图  3  不同能量密度组合的双波长预处理对DKDP晶体3ω损伤概率的影响

    Figure  3.  The effect of dual-wavelength conditioning with different energy density combinations on the 3ω damage probability of DKDP crystal

    图  4  不同预处理条件下的典型体损伤点形貌

    Figure  4.  Typical bulk damage pinpoint morphologies under different laser conditioning

    表  1  双波长预处理参数

    Table  1.   Dual-wavelength conditioning parameters

    group Afluence/(J·cm−2)group Bfluence/(J·cm−2)
    1ω3ω1ω3ω
    A1 0 7.4, 9.2, 11.0, 12.8, 14.6 B1 0 7.4, 9.2, 11.0
    A2 2.6 7.4, 9.2, 11.0, 12.8, 14.6 B2 7.9 7.4, 9.2, 11.0
    A3 5.3 7.4, 9.2, 11.0, 12.8, 14.6 B3 10.6 7.4, 9.2, 11.0
    A4 7.9 7.4, 9.2, 11.0, 12.8, 14.6 B4 15.9 7.4, 9.2, 11.0
    A5 10.6 7.4, 9.2, 11.0, 12.8, 14.6
    下载: 导出CSV

    表  2  不同预处理方式下3ω的最大零概率损伤阈值和平均损伤点密度

    Table  2.   Maximum zero probability damage threshold and average damage pinpoints density of 3ω under different pre-exposure methods

    groupareainitial bulk damage
    threshold/(J·cm−2)
    percentage/%mean pinpoints density/mm3
    (3ω, about 33.6 J/cm2)
    without conditioning13.7025
    AA116.621.210
    A218.232.88
    A318.837.24
    A419.945.31
    BB116.319.118
    B219.340.94
    B318.333.65
    B417.527.711
    下载: 导出CSV

    表  3  预处理参数与b的关系表

    Table  3.   Relationship between conditioning parameters and b

    areaconditioning methods1ω energy density/(J·cm−2)b
    without pre-exposure−13.752
    AA13ω0−16.664
    A23ω+1ω2.6−18.062
    A35.3−18.934
    A47.9−19.844
    BB13ω0−16.001
    B23ω+1ω7.9−19.140
    B310.6−18.196
    B415.9−17.291
    下载: 导出CSV
  • [1] Burnham A K, Hackel L A, Wegner P J, et al. Improving 351-nm damage performance of large-aperture fused silica and DKDP optics[C]//Proceedings of SPIE 4679, Laser-Induced Damage in Optical Materials. 2002: 173-185.
    [2] Carr C W, Auerbach J M. Effect of multiple wavelengths on laser-induced damage in KH(2-x)DxPO4 crystals[J]. Optics Letters, 2006, 31(5): 595-597. doi: 10.1364/OL.31.000595
    [3] De Yoreo J J, Burnham A K, Whitman P K. Developing KH2PO4 and KD2PO4 crystals for the world's most power laser[J]. International Materials Reviews, 2002, 47(3): 113-152. doi: 10.1179/095066001225001085
    [4] Krol H, Gallais L, Grèzes-Besset C, et al. Investigation of nanoprecursors threshold distribution in laser-damage testing[J]. Optics Communications, 2005, 256(1/3): 184-189.
    [5] Carr C W, Feit M D, Muyco J J, et al. Effect on scattering of complex morphology of DKDP bulk damage sites[C]//Proceedings of SPIE, Laser-Induced Damage in Optical Materials. 2004: 532-539.
    [6] Giuliano C R. Laser-induced damage to transparent dielectric materials[J]. Applied Physics Letters, 1964, 5(7): 137-139. doi: 10.1063/1.1754087
    [7] Bloembergen N. Laser-induced electric breakdown in solids[J]. IEEE Journal of Quantum Electronics, 1974, 10(3): 375-386. doi: 10.1109/JQE.1974.1068132
    [8] Hu Guohang, Zhao Yuanan, Li Dawei, et al. Wavelength dependence of laser-induced bulk damage morphology in KDP crystal: determination of the damage formation mechanism[J]. Chinese Physics Letters, 2012, 29: 037801. doi: 10.1088/0256-307X/29/3/037801
    [9] Hu Guohang, Qi Hongji, He Hongbo, et al. 3D morphology of laser-induced bulk damage at 355 and 1064nm in KDP crystal with different orientations[C]//Proceedings of SPIE, Laser-Induced Damage in Optical Materials. 2010.
    [10] Li Yaguo, Zhu Dexing, Zhang Qinghua, et al. Threshold fluences for conditioning, fatigue and damage effects of DKDP crystals[J]. Optical Materials, 2019, 91: 199-204. doi: 10.1016/j.optmat.2019.03.028
    [11] Feit M D, Rubenchik A M. Implications of nanoabsorber initiators for damage probability curves, pulselength scaling, and laser conditioning[C]//Proceedings of SPIE, Laser-Induced Damage in Optical Materials. 2003: 74-82.
    [12] DeMange P, Negres R A, Rubenchik A M, et al. The energy coupling efficiency of multiwavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals[J]. Journal of Applied Physics, 2008, 103: 083122. doi: 10.1063/1.2907992
    [13] Reyné S, Loiseau M, Duchateau G, et al. Toward a better understanding of multi-wavelength effects on KDP crystals[C]//Proceedings of SPIE, Damage to VUV, EUV, and X-Ray Optics II. 2009: 73610Z.
    [14] 吴金明, 赵元安, 汪琳, 等. 1064 nm激光和355 nm激光同时辐照DKDP晶体的耦合预处理效应[J]. 中国激光, 2019, 46:0501003. (Wu Jinming, Zhao Yuan’an, Wang Lin, et al. Coupling conditioning effect of DKDP crystals under simultaneous irradiation by 1064 nm laser and 355 nm laser[J]. Chinese Journal of Lasers, 2019, 46: 0501003 doi: 10.3788/CJL201946.0501003
    [15] 徐子媛, 王岳亮, 赵元安, 等. 不同脉冲宽度355 nm波长激光诱导DKDP晶体损伤特性[J]. 强激光与粒子束, 2019, 31:091004. (Xu Ziyuan, Wang Yueliang, Zhao Yuan’an, et al. Laser damage behaviors of DKDP crystals dominated by laser pulse duration[J]. High Power Laser and Particle Beams, 2019, 31: 091004 doi: 10.11884/HPLPB201931.190164
    [16] DeMange P P. Laser-induced defect reactions governing the damage performance of KDP and DKDP[D]. Davis: University of California, 2006: 49-59.
    [17] 刘志超, 许乔, 雷向阳, 等. 大口径氘化磷酸二氢钾晶体离线亚纳秒激光预处理技术[J]. 物理学报, 2021, 70:074208. (Liu Zhichao, Xu Qiao, Lei Xiangyang, et al. Off-line sub-nanosecond laser conditioning on large aperture deuterated potassium dihydrogen phosphate crystal[J]. Acta Physica Sinica, 2021, 70: 074208 doi: 10.7498/aps.70.20201524
    [18] Hicks D G, Boehly T R, Eggert J H, et al. Dissociation of liquid silica at high pressures and temperatures[J]. Physical Review Letters, 2006, 97: 025502. doi: 10.1103/PhysRevLett.97.025502
    [19] Carr C W, Bude J D, DeMange P. Laser-supported solid-state absorption fronts in silica[J]. Physical Review B, 2010, 82: 184304. doi: 10.1103/PhysRevB.82.184304
    [20] Li Ting, Zhao Yuanan, Lian Yafei, et al. Optimizing sub-nanosecond laser conditioning of DKDP crystals by varying the temporal shape of the pulse[J]. Optics Express, 2021, 29(22): 35993-36004. doi: 10.1364/OE.441918
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  628
  • HTML全文浏览量:  266
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 修回日期:  2022-04-20
  • 录用日期:  2022-04-26
  • 网络出版日期:  2022-04-30
  • 刊出日期:  2022-06-15

目录

    /

    返回文章
    返回