留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光电跟踪系统中的惯性稳定技术

杨开栋 王德恩 杨英 许党朋 王芳 刘昊

杨开栋, 王德恩, 杨英, 等. 光电跟踪系统中的惯性稳定技术[J]. 强激光与粒子束, 2022, 34: 081007. doi: 10.11884/HPLPB202234.220065
引用本文: 杨开栋, 王德恩, 杨英, 等. 光电跟踪系统中的惯性稳定技术[J]. 强激光与粒子束, 2022, 34: 081007. doi: 10.11884/HPLPB202234.220065
Yang Kaidong, Wang De’en, Yang Ying, et al. Inertial stabilization technology in optical-electric tracking system[J]. High Power Laser and Particle Beams, 2022, 34: 081007. doi: 10.11884/HPLPB202234.220065
Citation: Yang Kaidong, Wang De’en, Yang Ying, et al. Inertial stabilization technology in optical-electric tracking system[J]. High Power Laser and Particle Beams, 2022, 34: 081007. doi: 10.11884/HPLPB202234.220065

光电跟踪系统中的惯性稳定技术

doi: 10.11884/HPLPB202234.220065
详细信息
    作者简介:

    杨开栋,3202695790@qq.com

  • 中图分类号: TP273;TN29

Inertial stabilization technology in optical-electric tracking system

  • 摘要: 在侦查探测、激光通讯等领域,光电跟踪系统的闭环精度是其重要技术指标之一。为了提高闭环精度,一般可使用图像稳定技术,惯性稳定技术或整体自稳定技术。惯性稳定技术因其良好的稳定效果,已在光电跟踪系统中得到广泛应用。采用对比分析的方法对光电跟踪系统中的机架惯性稳定、反射镜惯性稳定以及惯性基准光稳定技术进行了原理分析,优势比较以及发展展望,总结出多种惯性稳定技术交叉使用的复合轴惯性稳定仍是未来一段时间的发展趋势。
  • 图  1  整体稳定式控制原理图

    Figure  1.  Schematic diagram of the overall stabilization method

    图  2  捷联稳定式控制原理图

    Figure  2.  Schematic diagram of the strap-down stabilization method

    图  3  两轴四框架光电跟踪系统[2]

    Figure  3.  Two-axis four-frame optical-electric tracking system[2]

    图  4  反射镜稳定技术中的反射镜[6]

    Figure  4.  Mirrors in mirror stabilization technology[6]

    图  5  含半角机构的反射镜稳定系统结构图[7]

    Figure  5.  Structure diagram of mirror stabilization system with half-angle mechanism[7]

    图  6  基于前馈控制的FSM视轴稳定技术[10]

    Figure  6.  Line-of-sight stabilization technology based on feed-forward control and FSM[10]

    图  7  基于光学惯性基准单元的视轴稳定原理图[12]

    Figure  7.  Schematic diagram of line-of-sight stabilization based on optical inertial reference unit[12]

    图  8  惯性伪星参考装置原理图[12]

    Figure  8.  Schematic of inertial pseudo-star reference unit (IPSRU)[12]

    图  9  波音公司SIMS结构图[15]

    Figure  9.  The structure diagram of Boeing’s  stabilized inertial measurement system (SIMS)[15]

    图  10  ATA公司OIRU结构图[16]

    Figure  10.  The structure diagram of ATA’s optical inertial reference unit (OIRU)[16]

    表  1  国内多轴多框架光电转台研制情况

    Table  1.   Development of domestic multi-axis and multi-frame photoelectric turntables

    structure typemanufacturerweight/kgvolume/mm×mmload functionstabilization precision/µrad
    two-axis four-frameCIOMP80490×650visible light detection
    focal distance: 20~500 mm
    infrared detection
    FOV(8~12 µm)
    14.40×10.80、2.40×1.80
    laser ranging
    wavelength: 1154 µm
    Distance: 20 km
    25
    two-axis four-frame01435358×508visible light detection
    focal distance: 15~300 mm
    infrared detection
    FOV(8~12µm)
    24×180、30×2.20
    40
    two-axis two-frame61825280×455visible light detection
    focal distance: 10~150 mm
    three modes: color, high resolution, low light
    100
    two-axis four-frameCIOMP200600×850visible light detection
    focal distance: 240~1000 mm
    infrared detection
    FOV(3~5 µm)
    30×2.250
    20
    two-axis four-frameCIOMP10260×420visible light detection
    focal distance: 5.4~72 mm
    two modes: color, high resolution
    100
    下载: 导出CSV

    表  2  国外多轴多框架光电转台研制情况

    Table  2.   Development of foreign multi-axis and multi-frame photoelectric turntables

    structure typemanufacturerweight/kgvolume/mm×mmload functionstabilization precision/µrad
    two-axis four-frameUSA
    Westing house
    32384×596visible light detection
    focal distance: 20~280 mm
    infrared detection FOV:
    7.50×9.70、2.250×2.90
    laser ranging distance: 10 km
    25
    two-axis four-frameIsrael
    TOPLITE
    53406×662visible light detection
    focal distance: 20~240 mm
    infrared detection
    FOV (8~120 µm, 3~5 µm)
    18×240、3.90×5.10
    1.30×1.70
    laser Ranging
    wave length: 1.54 µm
    distance: 20 km
    25
    two-axis four-frameItaly
    Astro
    30380×596infrared detection
    FOV(8~12 µm)
    40×2.70、16×10.70
    visible light detection:
    10 times zoom
    25
    three-axis stabilizationCanada
    mescam
    30356×548visible light detection
    focal distance: 16~160 mm
    infrared detection FOV:
    230×170、2.30×1.70
    laser ranging distance: 10 km
    35
    two-axis four-frameFrance
    Scarnoff
    35356×548visible light detection FOV:
    24×16、50×3.30
    infrared detection FOV:
    24×180、30×2.20
    laser ranging distance: 10 km
    35
    two-axis four-frameRussia
    GS-2
    57.5340×552visible light detection
    infrared detection
    laser ranging
    laser irradiation
    50
    下载: 导出CSV

    表  3  ATA公司的OIRU-xxx系列性能参数[16]

    Table  3.   Performance parameters of ATA’s OIRU-xxx series[16]

    OIRU-100OIRU-500OIRU-1000
    jitter performance (1−1000 Hz)100 nrad500 nrad2 μrad
    IKA performance1.2 mrad at 20 min2.2 mrad at 20 min6 mrad at 20 min
    mechanism size9.5″ dia. × 5.5″ high7″ dia. × 5″ high3.1″ dia. × 3.5″ high
    mechanism mass18 lbs10 lbs3 lbs
    electronics mass2 lbs2 lbs2 lbs
    power45 W30 W18 W
    gyro(3) Emcore 1.3k FOG(3) KVH DSP-1750D FOG(1) 2-Axis NG G2000 DTG
    ARS(3) ARS-16(3) ARS-16(3) ARS-15
    acceleration2 rad/s22 rad/s210 rad/s2
    bandwidth (open-loop crossover)>100 Hz>100 Hz>150 Hz
    position resolution<1 μrad<1 μrad<1 μrad
    controller typedigital (FPGA)digital (FPGA)digital (FPGA)
    下载: 导出CSV
  • [1] 胡浩军. 运动平台捕获、跟踪与瞄准系统视轴稳定技术研究[D]. 长沙: 国防科学技术大学, 2005: 12-15

    Hu Haojun. Line-of-sight stabilization of acquisition, tracking and pointing system on moving bed[D]. Changsha: National University of Defense Technology, 2005: 12-15
    [2] Satyarthi S. Optical line-of-sight steering using gimbaled mirrors[C]//Proceedings of the SPIE 9076, Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications XI. 2014: 90760E.
    [3] 吕宏宇, 金刚石, 高旭辉. 两轴四框架机载光电平台稳定原理分析[J]. 激光与红外, 2015, 45(2):194-198. (Lü Hongyu, Jin Gangshi, Gao Xuhui. Stabilization analysis of airborne electro-optical platform with two-axis and four-gimbal[J]. Laser & Infrared, 2015, 45(2): 194-198 doi: 10.3969/j.issn.1001-5078.2015.02.017

    Lü Hongyu, Jin Gangshi, Gao Xuhui. Stabilization analysis of airborne electro-optical platform with two-axis and four-gimbal[J]. Laser & Infrared, 2015, 45(2): 194-198 doi: 10.3969/j.issn.1001-5078.2015.02.017
    [4] 唐涛, 马佳光, 陈洪斌, 等. 光电跟踪系统中精密控制技术研究进展[J]. 光电工程, 2020, 47:200315. (Tang Tao, Ma Jiaguang, Chen Hongbin, et al. A review on precision control methodologies for optical-electric tracking control system[J]. Opto-Electronic Engineering, 2020, 47: 200315

    Tang Tao, Ma Jiaguang, Chen Hongbin, et al. A review on precision control methodologies for optical-electric tracking control system[J]. Opto-Electronic Engineering, 2020, 47: 200315
    [5] 侯瑞博, 魏涛, 宋景. 航空光电侦察平台关键技术及其发展[J]. 电子元器件与信息技术, 2019(3):51-53,57. (Hou Ruibo, Wei Tao, Song Jing. Key technologies and its development of aeronautical photoelectric reconnaissance platform[J]. Electronic Component and Information Technology, 2019(3): 51-53,57 doi: 10.19772/j.cnki.2096-4455.2019.3.014

    Hou Ruibo, Wei Tao, Song Jing. Key Technologies and its development of aeronautical photoelectric reconnaissance platform[J]. Electronic Component and Information Technology, 2019(3): 51-53, 57 doi: 10.19772/j.cnki.2096-4455.2019.3.014
    [6] 洪华杰, 王学武, 翁干飞. 光电侦察装备中的反射镜稳定技术[J]. 应用光学, 2011, 32(4):591-597. (Hong Huajie, Wang Xuewu, Weng Ganfei. Mirror stabilization in electro-optical reconnaissance system[J]. Journal of Applied Optics, 2011, 32(4): 591-597 doi: 10.3969/j.issn.1002-2082.2011.04.001

    Hong Huajie, Wang Xuewu, Weng Ganfei. Mirror stabilization in electro-optical reconnaissance system[J]. Journal of Applied Optics, 2011, 32(4): 591-597 doi: 10.3969/j.issn.1002-2082.2011.04.001
    [7] Hilkert J M, Cohen S. Development of mirror stabilization line-of-sight rate equations for an unconventional sensor-to-gimbal orientation[C]//Proceedings of the SPIE 7338, Acquisition, Tracking, Pointing, and Laser Systems Technologies XXIII. 2009: 733803.
    [8] 王琦, 孙广利, 黎纯宁, 等. 基于半捷联方式的反射镜视轴稳定技术[J]. 红外与激光工程, 2015, 44(10):3070-3075. (Wang Qi, Sun Guangli, Li Chunning, et al. Inertial line-of-sight stabilization technique of semi-strapdown control using mirrors[J]. Infrared and Laser Engineering, 2015, 44(10): 3070-3075 doi: 10.3969/j.issn.1007-2276.2015.10.035

    Wang Qi, Sun Guangli, Li Chunning, et al. Inertial line-of-sight stabilization technique of semi-strapdown control using mirrors[J]. Infrared and Laser Engineering, 2015, 44(10): 3070-3075 doi: 10.3969/j.issn.1007-2276.2015.10.035
    [9] 宋江鹏, 孙广利, 周荻, 等. 反射镜光电平台视轴稳定技术研究[J]. 红外与激光工程, 2015, 44(6):1904-1911. (Song Jiangpeng, Sun Guangli, Zhou Di, et al. Line-of-sight stabilization techniques for mirror electro-optical platform[J]. Infrared and Laser Engineering, 2015, 44(6): 1904-1911 doi: 10.3969/j.issn.1007-2276.2015.06.041

    Song Jiangpeng, Sun Guangli, Zhou Di, et al. Line-of-sight stabilization techniques for mirror electro-optical platform[J]. Infrared and Laser Engineering, 2015, 44(6): 1904-1911 doi: 10.3969/j.issn.1007-2276.2015.06.041
    [10] Xia Yunxia, Bao Qiliang, Liu Zidong. A new disturbance feedforward control method for electro-optical tracking system line-of-sight stabilization on moving platform[J]. Sensors, 2018, 18: 4350. doi: 10.3390/s18124350
    [11] Schneeberger T J, Barker K W. High-altitude balloon experiment: a testbed for acquisition, tracking, and pointing technologies[C]//Proceedings of the SPIE 1950 Acquisition, Tracking, and Pointing VII. 1993: 2-15.
    [12] Luniewicz M F, Murphy J, O'Neil E, et al. Testing the inertial pseudo-star reference unit[C]//Proceedings of the SPIE 2221, Acquisition, Tracking, and Pointing VIII. 1994: 638-649.
    [13] Eckelkamp-Baker D, Sebesta H R. Optical inertial reference unit for kilohertz bandwidth submicroradian optical pointing and jitter control: U. S. Patent 7227, 111[P]. 2007-06-05.
    [14] Gilmore J P, Luniewicz M F, Sargent D. Enhanced precision pointing jitter suppression system[C]//Proceedings of the SPIE 4632, Laser and Beam Control Technologies. 2002: 38-49.
    [15] Walter R E, Danny H, Donaldson J. Stabilized inertial measurement system (SIMS)[C]//Proceedings of the SPIE 4724, Laser Weapons Technology III. 2002: 57-68.
    [16] ATA(Applied Technology Associate). Optical inertial reference unit[EB/OL]. (2019-01-01)[2021-10-14].https://bluehalo.com/product/optical-inertial-reference-unit-oiru/.
    [17] Yue Ronggang, Wang Humei, Jin Ting, et al. Image motion measurement and image restoration system based on an inertial reference laser[J]. Sensors, 2021, 21: 3309. doi: 10.3390/s21103309
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1105
  • HTML全文浏览量:  463
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-10
  • 修回日期:  2022-04-28
  • 录用日期:  2022-06-20
  • 网络出版日期:  2022-06-22
  • 刊出日期:  2022-08-15

目录

    /

    返回文章
    返回