[1] |
Snavely R A, Key M H, Hatchett S P, et al. Intense high-energy proton beams from petawatt-laser irradiation of solids[J]. Physical Review Letters, 2000, 85(14): 2945-2948. doi: 10.1103/PhysRevLett.85.2945
|
[2] |
Willingale L, Mangles S P D, Nilson P M, et al. Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma[J]. Physical Review Letters, 2006, 96: 245002. doi: 10.1103/PhysRevLett.96.245002
|
[3] |
Roth M, Jung D, Falk K, et al. Bright laser-driven neutron source based on the relativistic transparency of solids[J]. Physical Review Letters, 2013, 110: 044802. doi: 10.1103/PhysRevLett.110.044802
|
[4] |
Vranic M, Klimo O, Korn G, et al. Multi-GeV electron-positron beam generation from laser-electron scattering[J]. Scientific Reports, 2018, 8: 4702. doi: 10.1038/s41598-018-23126-7
|
[5] |
Stark D J, Toncian T, Arefiev A V. Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field[J]. Physical Review Letters, 2016, 116: 185003. doi: 10.1103/PhysRevLett.116.185003
|
[6] |
Huang T W, Kim C M, Zhou C T, et al. Highly efficient laser-driven Compton gamma-ray source[J]. New Journal of Physics, 2019, 21: 013008. doi: 10.1088/1367-2630/aaf8c4
|
[7] |
Yu J Q, Hu R H, Gong Z, et al. The generation of collimated γ-ray pulse from the interaction between 10 PW laser and a narrow tube target[J]. Applied Physics Letters, 2018, 112: 204103. doi: 10.1063/1.5030942
|
[8] |
Zhang F, Cai H B, Zhou W M, et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets[J]. Nature Physics, 2020, 16(7): 810-814. doi: 10.1038/s41567-020-0878-9
|
[9] |
Theobald W, Solodov A A, Stoeckl C, et al. Initial cone-in-shell fast-ignition experiments on OMEGA[J]. Physics of Plasmas, 2011, 18: 056305. doi: 10.1063/1.3566082
|
[10] |
Jarrott L C, Wei M S, McGuffey C, et al. Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets[J]. Nature Physics, 2016, 12(5): 499-504. doi: 10.1038/nphys3614
|
[11] |
Drake R P. High-energy-density physics[J]. Physics Today, 2010, 63(6): 28-33. doi: 10.1063/1.3455249
|
[12] |
Del Sorbo D, Feugeas J L, Nicolaï P, et al. Extension of a reduced entropic model of electron transport to magnetized nonlocal regimes of high-energy-density plasmas[J]. Laser and Particle Beams, 2016, 34(3): 412-425. doi: 10.1017/S0263034616000252
|
[13] |
Verbeeck J, Tian H, Schattschneider P. Production and application of electron vortex beams[J]. Nature, 2010, 467(7313): 301-304. doi: 10.1038/nature09366
|
[14] |
Arnould M, Goriely S, Takahashi K. The r-process of stellar nucleosynthesis: astrophysics and nuclear physics achievements and mysteries[J]. Physics Reports, 2007, 450(4/6): 97-213.
|
[15] |
Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8
|
[16] |
Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2015, 3: e3. doi: 10.1017/hpl.2014.52
|
[17] |
Faure J, Glinec A, Pukhov A, et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 2004, 431(7008): 541-544. doi: 10.1038/nature02963
|
[18] |
Pukhov A, Meyer-Ter-Vehn J. Laser wake field acceleration: the highly non-linear broken-wave regime[J]. Applied Physics B, 2002, 74(4/5): 355-361.
|
[19] |
Pukhov A, Sheng Z M, Meyer-Ter-Vehn J. Particle acceleration in relativistic laser channels[J]. Physics of Plasmas, 1999, 6(7): 2847-2854. doi: 10.1063/1.873242
|
[20] |
Tsakiris G D, Gahn C, Tripathi V K. Laser induced electron acceleration in the presence of static electric and magnetic fields in a plasma[J]. Physics of Plasmas, 2000, 7(7): 3017-3030. doi: 10.1063/1.874154
|
[21] |
Gahn C, Tsakiris G D, Pukhov A, et al. Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels[J]. Physical Review Letters, 1999, 83(23): 4772-4775. doi: 10.1103/PhysRevLett.83.4772
|
[22] |
Brunel F. Not-so-resonant, resonant absorption[J]. Physical Review Letters, 1987, 59(1): 52-55. doi: 10.1103/PhysRevLett.59.52
|
[23] |
Arefiev A V, Khudik V N, Robinson A P L, et al. Beyond the ponderomotive limit: direct laser acceleration of relativistic electrons in sub-critical plasmas[J]. Physics of Plasmas, 2016, 23: 056704. doi: 10.1063/1.4946024
|
[24] |
Wang H Y, Lin C, Sheng Z M, et al. Laser shaping of a relativistic intense, short Gaussian pulse by a plasma lens[J]. Physical Review Letters, 2011, 107: 265002. doi: 10.1103/PhysRevLett.107.265002
|
[25] |
Hussein A E, Arefiev A V, Batson T, et al. Towards the optimisation of direct laser acceleration[J]. New Journal of Physics, 2021, 23: 023031. doi: 10.1088/1367-2630/abdf9a
|
[26] |
Thévenet M, Leblanc A, Kahaly S, et al. Vacuum laser acceleration of relativistic electrons using plasma mirror injectors[J]. Nature Physics, 2016, 12(4): 355-360. doi: 10.1038/nphys3597
|
[27] |
Snyder J, Ji L L, George K M, et al. Relativistic laser driven electron accelerator using micro-channel plasma targets[J]. Physics of Plasmas, 2019, 26: 033110. doi: 10.1063/1.5087409
|
[28] |
Gong Z, Robinson A P L, Yan X Q, et al. Highly collimated electron acceleration by longitudinal laser fields in a hollow-core target[J]. Plasma Physics and Controlled Fusion, 2019, 61: 035012. doi: 10.1088/1361-6587/aaf94b
|
[29] |
Xiao K D, Huang T W, Ju L B, et al. Energetic electron-bunch generation in a phase-locked longitudinal laser electric field[J]. Physical Review E, 2016, 93: 043207. doi: 10.1103/PhysRevE.93.043207
|
[30] |
Ji L L, Snyder J, Pukhov A, et al. Towards manipulating relativistic laser pulses with micro-tube plasma lenses[J]. Scientific Reports, 2016, 6: 23256. doi: 10.1038/srep23256
|
[31] |
何武, 周维民, 张智猛, 等. 强激光与柱腔靶作用下准直高能电子束的产生[J]. 强激光与粒子束, 2015, 27:072003 doi: 10.11884/HPLPB201527.072003He Wu, Zhou Weimin, Zhang Zhimeng, et al. High-energy collimated electron acceleration from ultra-intense laser interaction with tube targets[J]. High Power Laser and Particle Beams, 2015, 27: 072003 doi: 10.11884/HPLPB201527.072003
|
[32] |
吉亮亮, 耿学松, 伍艺通, 等. 超强激光驱动的辐射反作用力效应与极化粒子加速[J]. 物理学报, 2021, 70:085203 doi: 10.7498/aps.70.20210091Ji Liangliang, Geng Xuesong, Wu Yitong, et al. Laser-driven radiation-reaction effect and polarized particle acceleration[J]. Acta Physica Sinica, 2021, 70: 085203 doi: 10.7498/aps.70.20210091
|
[33] |
Gong Zheng, Mackenroth F, Wang Tao, et al. Direct laser acceleration of electrons assisted by strong laser-driven azimuthal plasma magnetic fields[J]. Physical Review E, 2020, 102: 013206. doi: 10.1103/PhysRevE.102.013206
|
[34] |
Wang Tao, Gong Zheng, Chin K, et al. Impact of ion dynamics on laser-driven electron acceleration and gamma-ray emission in structured targets at ultra-high laser intensities[J]. Plasma Physics and Controlled Fusion, 2019, 61: 084004. doi: 10.1088/1361-6587/ab2499
|
[35] |
Ji L L, Snyder J, Shen B F. Single-pulse laser-electron collision within a micro-channel plasma target[J]. Plasma Physics and Controlled Fusion, 2019, 61: 065019. doi: 10.1088/1361-6587/ab1692
|
[36] |
Arber T D, Bennett K, Brady C S, et al. Contemporary particle-in-cell approach to laser-plasma modelling[J]. Plasma Physics and Controlled Fusion, 2015, 57: 113001. doi: 10.1088/0741-3335/57/11/113001
|