留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于能量回收技术的光源——ERL光源

黄森林 刘克新

黄森林, 刘克新. 基于能量回收技术的光源——ERL光源[J]. 强激光与粒子束, 2022, 34: 104011. doi: 10.11884/HPLPB202234.220076
引用本文: 黄森林, 刘克新. 基于能量回收技术的光源——ERL光源[J]. 强激光与粒子束, 2022, 34: 104011. doi: 10.11884/HPLPB202234.220076
Huang Senlin, Liu Kexin. Energy recovery linac light source[J]. High Power Laser and Particle Beams, 2022, 34: 104011. doi: 10.11884/HPLPB202234.220076
Citation: Huang Senlin, Liu Kexin. Energy recovery linac light source[J]. High Power Laser and Particle Beams, 2022, 34: 104011. doi: 10.11884/HPLPB202234.220076

基于能量回收技术的光源——ERL光源

doi: 10.11884/HPLPB202234.220076
详细信息
    作者简介:

    黄森林,huangsl@pku.edu.cn

  • 中图分类号: TL53

Energy recovery linac light source

  • 摘要: 能量回收技术将使用后的电子束进行能量回收,用于加速后续束团,可大大减少加速器消耗的射频功率和有害辐射。基于能量回收技术的光源除节能环保外,还具有束团短、发射度低的特点,可有效提高光源的峰值亮度和相干性,是一种很有潜力的未来先进光源。介绍能量回收直线加速器技术的基本原理、相关关键物理问题和技术以及能量回收直线加速器发展现状,最后简要介绍几个国际上提出的典型能量回收直线加速器光源方案。
  • 图  1  能量回收光源装置示意图[7]

    Figure  1.  A sketch of energy recovery linac light source[7]

    图  2  能量回收直线加速器实验装置的典型并束结构

    Figure  2.  Typical mergers for energy recovery linac test facility

    图  3  CSR引起的发射度增长及补偿方法示意图[12]

    Figure  3.  Schematics of CSR induced emittance growth and compensation method[12]

    图  4  BBU效应示意图[13]

    Figure  4.  Schematic diagram of BBU effect [13]

    图  5  JLab ERL装置示意图[29]

    Figure  5.  Schematic layout of JLab ERL facility [29]

  • [1] Tigner M. A possible apparatus for electron clashing-beam experiments[J]. Il Nuovo Cimento (1955-1965), 1965, 37(3): 1228-1231.
    [2] Schriber S O, Funk L W, Hodge S B, et al. Experimental measurements on a 25 meV reflexotron[J]. IEEE Transactions on Nuclear Science, 1977, 24(3): 1061-1063. doi: 10.1109/TNS.1977.4328851
    [3] Flanz J B, Sargent C P. Operation of an isochronous beam recirculation system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1985, 241(2/3): 325-333.
    [4] Benson S, Biallas G, Bohn C, et al. First lasing of the Jefferson Lab IR Demo FEL[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 429(1/3): 27-32.
    [5] Neil G R, Bohn C L, Benson S V, et al. Sustained kilowatt lasing in a free-electron laser with same-cell energy recovery[J]. Physical Review Letters, 2000, 84(4): 662-665. doi: 10.1103/PhysRevLett.84.662
    [6] Behre C, Benson S, Biallas G, et al. First lasing of the IR upgrade FEL at Jefferson lab[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 528(1/2): 19-22.
    [7] Bilderback D H, Elleaume P, Weckert E. Review of third and next generation synchrotron light sources[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38(9): S773-S797. doi: 10.1088/0953-4075/38/9/022
    [8] Douglas D, Technical Note 96-050, Jefferson Laboratory (1996).
    [9] Shizuma T, Hajima R, Minehara E J, et al. Injector design for the JAERI-FEL energy-recovery transport[C]//Proceedings of the 7th European Particle Accelerator Conference. 2000: 1074-1076.
    [10] 刘克新, 郝建奎, 全胜文, 等. 射频超导技术[J]. 强激光与粒子束, 2022, 34:104014 doi: 10.11884/HPLPB202234.220075

    Liu Kexin, Hao Jiankui, Quan Shengwen, et al. Superconducting radio-frequency technology[J]. High Power Laser and Particle Beams, 2022, 34: 104014 doi: 10.11884/HPLPB202234.220075
    [11] Merminga L, Douglas D R, Krafft G A. High-current energy-recovering electron linacs[J]. Annual Review of Nuclear and Particle Science, 2003, 53: 387-429. doi: 10.1146/annurev.nucl.53.041002.110456
    [12] Hajima R. Emittance compensation in a return arc of an energy-recovery linac[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 528(1/2): 335-339.
    [13] Sereno N S R. Experimental studies of multipass beam breakup and energy recovery using the CEBAF injector LINAC[D]. Urbana: University of Illinois, 1994.
    [14] Pozdeyev E. Regenerative multipass beam breakup in two dimensions[J]. Physical Review Accelerators and Beams, 2005, 8: 054401. doi: 10.1103/PhysRevSTAB.8.054401
    [15] Padamsee H, Knobloch J, Hays T. RF Superconductivity for accelerators[M]. New York: John Wiley & Sons, 1998.
    [16] Yunn B C. Expressions for the threshold current of multipass beam breakup in recirculating linacs from single cavity models[J]. Physical Review Accelerators and Beams, 2005, 8: 104401. doi: 10.1103/PhysRevSTAB.8.104401
    [17] Bazarov I V, Hoffstaetter G H. Multi-pass beam-breakup: theory and calculation[C]//Proceedings of EPAC 2004. 2004: 2197-2199.
    [18] Tennant C D. Studies of energy recovery linacs at Jefferson laboratory: 1 GeV demonstration of energy recovery at CEBAF and studies of the multibunch, multipass beam breakup instability in the 10 kW FEL upgrade driver[D]. College of William & Mary - Arts & Sciences, 2006.
    [19] Adderley P A, Clark J, Grames J, et al. Load-locked dc high voltage GaAs photogun with an inverted-geometry ceramic insulator[J]. Physical Review Accelerators and Beams, 2010, 13: 010101. doi: 10.1103/PhysRevSTAB.13.010101
    [20] Dunham B, Barley J, Bartnik A, et al. Record high-average current from a high-brightness photoinjector[J]. Applied Physics Letters, 2013, 102: 034105. doi: 10.1063/1.4789395
    [21] Gulliford C, Bartnik A, Bazarov I, et al. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector[J]. Applied Physics Letters, 2015, 106: 094101. doi: 10.1063/1.4913678
    [22] Zheng Lianmin, Li Zizheng, Du Yingchao, et al. Design of a 217 MHz VHF gun at Tsinghua University[C]//Proceedings of the 10th International Particle Accelerator Conference. 2019: 2050-2053.
    [23] Sannibale F, Filippetto D, Qian H, et al. High-brightness beam tests of the very high frequency gun at the Advanced Photo-injector EXperiment test facility at the Lawrence Berkeley National Laboratory[J]. Review of Scientific Instruments, 2019, 90: 033304. doi: 10.1063/1.5088521
    [24] Petrushina I, Litvinenko V N, Jing Y, et al. High-brightness continuous-wave electron beams from superconducting radio-frequency photoemission gun[J]. Physical Review Letters, 2020, 124: 244801. doi: 10.1103/PhysRevLett.124.244801
    [25] Quan Shengwen, Hao Jiankui, Lin Lin, et al. Stable operation of the DC-SRF photoinjector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 798: 117-120.
    [26] Zhao Sheng, Huang Senlin, Lin Lin, et al. Longitudinal phase space improvement of a continuous-wave photoinjector toward X-ray free-electron laser application[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1018: 165796. doi: 10.1016/j.nima.2021.165796
    [27] Liepe M. Conceptual layout of the cavity string of the Cornell ERL main linac cryomodule[C]//Proceedings of the 11th Workshop on RF Superconductivity. 2003: 115-119.
    [28] Li Yongming, Zhu Feng, Quan Shengwen, et al. The design of a five-cell high-current superconducting cavity[J]. Chinese Physics C, 2012, 36(1): 74-79. doi: 10.1088/1674-1137/36/1/013
    [29] Douglas D, Benson S V, Krafft G A, et al. Driver accelerator design for the 10kW upgrade for the JLAB IR FEL[C]//Proc of LINAC. 2001: 867-870.
    [30] Merminga L, Laboratory J. Energy recovery linacs[C]//Proceedings of 2007 IEEE Particle Accelerator Conference. 2007: 22-26.
    [31] Tennant C, Benson S, Boyce J, et al. LERF – New life for the Jefferson laboratory FEL[C]//Proceedings of the 59th ICFA Advanced Beam Dynamics Workshop on Energy Recovery Linacs. 2017: 45-48.
    [32] Merminga L, Beard K, Cardman L, et al. ELIC: an electron-light ion collider based at CEBAF[C]//Proceedings of EPAC 2002. 2002: 203-205.
    [33] Nishimori N, Hajima R, Iijima H, et al. FEL oscillation with a high extraction efficiency at JAEA ERL FEL[C]//Proceedings of the 28th International Free Electron Laser Conference. 2006: 265-272.
    [34] Sakanaka S, Adachi M, Adachi S, et al. Recent progress and operational status of the compact ERL at KEK[C]//Proceedings of the 6th International Particle Accelerator Conference. 2015: 1359-1362.
    [35] Morikawa Y, Haga K, Hagiwara M, et al. New industrial application beamline for the cERL in KEK[C]//Proceedings of the 10th International Particle Accelerator Conference. 2019: 3475-3477.
    [36] Gulliford C, Banerjee N, Bartnik A, et al. CBETA beam commissioning results[C]//Proceedings of the 10th International Particle Accelerator Conference. 2019: 748-750.
    [37] Arnold M, Birkhan J, Pforr J, et al. First operation of the superconducting Darmstadt linear electron accelerator as an energy recovery linac[J]. Physical Review Accelerators and Beams, 2020, 23: 020101. doi: 10.1103/PhysRevAccelBeams.23.020101
    [38] Vinokurov N A. Status of Novosibirsk ERL[C]//Proceedings of the 63th ICFA Advanced Beam Dynamics Workshop on Energy Recovery Linacs. 2019: 5-7.
    [39] Kaabi W, Chaikovska I, Stocchi A, et al. PERLE: a high power energy recovery facility[C]//Proceedings of the 10th International Particle Accelerator Conference. 2019: 1396-1399.
    [40] Wang Guimei, Chao Y C, Liu Chuyu, et al. Energy recovery transport design for PKU FEL[C]//Proceedings of 2007 IEEE Particle Accelerator Conference. 2007: 1191-1193.
    [41] Huang S L, Liu K X, Quan S W, et al. Optics layout for the ERL test facility at Peking University[C]//Proceedings of ERL 2011. 2011: 49-51.
    [42] Chen Si, Huang Senlin, Li Yongming, et al. Multi-pass, multi-bunch beam breakup for 9-cell Tesla cavities in the ERL[J]. Chinese Physics C, 2013, 37: 087001. doi: 10.1088/1674-1137/37/8/087001
    [43] Cui Xiaohao, Wang Jiuqing, Wang Shuhong, et al. Lattice design and beam dynamics of ERL-TF in IHEP, Beijing[C]//Proceedings of ERL 2011. 2011: 127-129.
    [44] Dai Jinhua, Deng Haixiao, Dai Zhimin. Design of Shanghai high power THz-FEL source[C]//Proceedings of FEL 2011. 2011: 271-273.
    [45] Li P, Wu D, Li M, et al. First lasing at the CAEP THz FEL facility[C]//Proceedings of 39th Free Electron Laser Conference. 2019: 11-14.
    [46] Gruner S M, Bilderback D, Bazarov I, et al. Energy recovery linacs as synchrotron radiation sources (invited)[J]. Review of Scientific Instruments, 2002, 73(2): 1402-1406.
    [47] Bilderback D H, Brock J D, Dale D S, et al. Energy recovery linac (ERL) coherent hard X-ray sources[J]. New Journal of Physics, 2010, 12: 035011. doi: 10.1088/1367-2630/12/3/035011
    [48] Flavell W R, Quinn F M, Clarke J A, et al. 4GLS – the UK’s fourth generation light source[C]//Proceedings of SPIE 5917, Fourth Generation X-Ray Sources and Optics III. 2005: 59170C.
    [49] 金光齐, 黄志戎, 瑞安·林德伯格. 同步辐射与自由电子激光——相干X射线产生原理[M]. 黄森林, 刘克新, 译. 北京: 北京大学出版社, 2018

    Kim K J, Huang Zhirong, Lindberg R. Synchrotron radiation and free-electron lasers: principles of coherent X-ray generation[M]. Huang Senlin, Liu Kexin, trans. Beijing: Peking University Press, 2018
    [50] Kim K J, Shvyd’ko Y, Reiche S. A proposal for an X-ray free-electron laser oscillator with an energy-recovery linac[J]. Physical Review Letters, 2008, 100: 244802. doi: 10.1103/PhysRevLett.100.244802
    [51] Zhao Z T, Wang Z, Feng C, et al. Energy recovery linac based fully coherent light source[J]. Scientific Reports, 2021, 11: 23875. doi: 10.1038/s41598-021-03354-0
  • 加载中
图(5)
计量
  • 文章访问数:  1036
  • HTML全文浏览量:  344
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-19
  • 修回日期:  2022-06-19
  • 网络出版日期:  2022-06-27
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回