[1] |
Daukantas P. Synchrotron light sources for the 21st century[J]. Optics and Photonics News, 2021, 32(9): 32-39. doi: 10.1364/OPN.32.9.000032
|
[2] |
Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267
|
[3] |
Gordon D, Tzeng K C, Clayton C E, et al. Observation of electron energies beyond the linear dephasing limit from a laser-excited relativistic plasma wave[J]. Physical Review Letters, 1998, 80(10): 2133-2136. doi: 10.1103/PhysRevLett.80.2133
|
[4] |
Leemans W P, Gonsalves A J, Mao H S, et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[J]. Physical Review Letters, 2014, 113: 245002. doi: 10.1103/PhysRevLett.113.245002
|
[5] |
Gonsalves A J, Nakamura K, Daniels J, et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide[J]. Physical Review Letters, 2019, 122: 084801. doi: 10.1103/PhysRevLett.122.084801
|
[6] |
Nakajima K. Towards a table-top free-electron laser[J]. Nature Physics, 2008, 4(2): 92-93. doi: 10.1038/nphys846
|
[7] |
Emma C, Van Tilborg J, Assmann R, et al. Free electron lasers driven by plasma accelerators: status and near-term prospects[J]. High Power Laser Science and Engineering, 2021, 9: e57. doi: 10.1017/hpl.2021.39
|
[8] |
Sarri G. Laser-driven positron sources for applications in fundamental science and industry[C]//Proceedings of SPIE 11790, Applying Laser-driven Particle Acceleration II, Medical and Nonmedical Uses of Distinctive Energetic Particle and Photon Sources: SPIE Optics + Optoelectronics Industry Event. 2021: 117900F.
|
[9] |
Huang Zhirong, Kim K J. Review of X-ray free-electron laser theory[J]. Physical Review Accelerators and Beams, 2007, 10: 034801. doi: 10.1103/PhysRevSTAB.10.034801
|
[10] |
Faure J, Glinec Y, Pukhov A, et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 2004, 431(7008): 541-544. doi: 10.1038/nature02963
|
[11] |
Chen Min, Sheng Zhengming, Ma Yanyun, et al. Electron injection and trapping in a laser wakefield by field ionization to high-charge states of gases[J]. Journal of Applied Physics, 2006, 99: 056109. doi: 10.1063/1.2179194
|
[12] |
Buck A, Wenz J, Xu J, et al. Shock-front injector for high-quality laser-plasma acceleration[J]. Physical Review Letters, 2013, 110: 185006. doi: 10.1103/PhysRevLett.110.185006
|
[13] |
Yu L L, Esarey E, Schroeder C B, et al. Two-color laser-ionization injection[J]. Physical Review Letters, 2014, 112: 125001. doi: 10.1103/PhysRevLett.112.125001
|
[14] |
Tomassini P, Terzani D, Baffigi F, et al. High-quality 5 GeV electron bunches with resonant multi-pulse ionization injection[J]. Plasma Physics and Controlled Fusion, 2020, 62: 014010. doi: 10.1088/1361-6587/ab45c5
|
[15] |
Xu X L, Li F, An W, et al. High quality electron bunch generation using a longitudinal density-tailored plasma-based accelerator in the three-dimensional blowout regime[J]. Physical Review Accelerators and Beams, 2017, 20: 111303. doi: 10.1103/PhysRevAccelBeams.20.111303
|
[16] |
Pollock B B, Clayton C E, Ralph J E, et al. Demonstration of a narrow energy spread, ~0.5 GeV electron beam from a two-stage laser wakefield accelerator[J]. Physical Review Letters, 2011, 107: 045001. doi: 10.1103/PhysRevLett.107.045001
|
[17] |
Liu J S, Xia C Q, Wang W T, et al. All-optical cascaded laser wakefield accelerator using ionization-induced injection[J]. Physical Review Letters, 2011, 107: 035001. doi: 10.1103/PhysRevLett.107.035001
|
[18] |
Zhang Zhijun, Li Wentao, Liu Jiansheng, et al. Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching[J]. Physics of Plasmas, 2016, 23: 053106. doi: 10.1063/1.4947536
|
[19] |
Brinkmann R, Delbos N, Dornmair I, et al. Chirp mitigation of plasma-accelerated beams by a modulated plasma density[J]. Physical Review Letters, 2017, 118: 214801. doi: 10.1103/PhysRevLett.118.214801
|
[20] |
Manahan G G, Habib A F, Scherkl P, et al. Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams[J]. Nature Communications, 2017, 8: 15705. doi: 10.1038/ncomms15705
|
[21] |
Li F, Hua J F, Xu X L, et al. Generating high-brightness electron beams via ionization injection by transverse colliding lasers in a plasma-wakefield accelerator[J]. Physical Review Letters, 2013, 111: 015003. doi: 10.1103/PhysRevLett.111.015003
|
[22] |
Wang W T, Li W T, Liu J S, et al. High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control[J]. Physical Review Letters, 2016, 117: 124801. doi: 10.1103/PhysRevLett.117.124801
|
[23] |
Ke L T, Feng K, Wang W T, et al. Near-GeV electron beams at a few per-mille level from a laser wakefield accelerator via density-tailored plasma[J]. Physical Review Letters, 2021, 126: 214801. doi: 10.1103/PhysRevLett.126.214801
|
[24] |
Shalloo R J, Dann S J D, Gruse J N, et al. Automation and control of laser wakefield accelerators using Bayesian optimization[J]. Nature Communications, 2020, 11: 6355. doi: 10.1038/s41467-020-20245-6
|
[25] |
Jalas S, Kirchen M, Messner P, et al. Bayesian optimization of a laser-plasma accelerator[J]. Physical Review Letters, 2021, 126: 104801. doi: 10.1103/PhysRevLett.126.104801
|
[26] |
Dornmair I, Floettmann K, Maier A R. Emittance conservation by tailored focusing profiles in a plasma accelerator[J]. Physical Review Accelerators and Beams, 2015, 18: 041302. doi: 10.1103/PhysRevSTAB.18.041302
|
[27] |
Fang Ming, Wang Wentao, Zhang Zhijun, et al. Long-distance characterization of high-quality laser-wakefield-accelerated electron beams[J]. Chinese Optics Letters, 2018, 16: 040201. doi: 10.3788/COL201816.040201
|
[28] |
van Tilborg J, Steinke S, Geddes C G R, et al. Active plasma lensing for relativistic laser-plasma-accelerated electron beams[J]. Physical Review Letters, 2015, 115: 184802. doi: 10.1103/PhysRevLett.115.184802
|
[29] |
Thaury C, Guillaume E, Döpp A, et al. Demonstration of relativistic electron beam focusing by a laser-plasma lens[J]. Nature Communications, 2015, 6: 6860. doi: 10.1038/ncomms7860
|
[30] |
van Tilborg J, Barber S K, Isono F, et al. Free-electron lasers driven by laser plasma accelerators[J]. AIP Conference Proceedings, 2017, 1812: 020002.
|
[31] |
Wu Fenxiang, Zhang Zongxin, Yang Xiaojun, et al. Performance improvement of a 200TW/1Hz Ti: sapphire laser for laser wakefield electron accelerator[J]. Optics & Laser Technology, 2020, 131: 106453.
|
[32] |
Maier A R, Meseck A, Reiche S, et al. Demonstration scheme for a laser-plasma-driven free-electron laser[J]. Physical Review X, 2012, 2: 031019.
|
[33] |
Huang Zhirong, Ding Yuantao, Schroeder C B. Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator[J]. Physical Review Letters, 2012, 109: 204801. doi: 10.1103/PhysRevLett.109.204801
|
[34] |
Couprie M E, Labat M, Evain C, et al. An application of laser-plasma acceleration: towards a free-electron laser amplification[J]. Plasma Physics and Controlled Fusion, 2016, 58: 034020. doi: 10.1088/0741-3335/58/3/034020
|
[35] |
Delbos N, Werle C, Dornmair I, et al. Lux - A laser-plasma driven undulator beamline[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909: 318-322.
|
[36] |
Liu Tao, Zhang Tong, Wang Dong, et al. Compact beam transport system for free-electron lasers driven by a laser plasma accelerator[J]. Physical Review Accelerators and Beams, 2017, 20: 020701. doi: 10.1103/PhysRevAccelBeams.20.020701
|
[37] |
Schlenvoigt H P, Haupt K, Debus A, et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator[J]. Nature Physics, 2008, 4(2): 130-133. doi: 10.1038/nphys811
|
[38] |
Fuchs M, Weingartner R, Popp A, et al. Laser-driven soft-X-ray undulator source[J]. Nature Physics, 2009, 5(11): 826-829. doi: 10.1038/nphys1404
|
[39] |
André T, Andriyash I A, Loulergue A, et al. Control of laser plasma accelerated electrons for light sources[J]. Nature Communications, 2018, 9: 1334. doi: 10.1038/s41467-018-03776-x
|
[40] |
Wang Wentao, Feng Ke, Ke Lintong, et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator[J]. Nature, 2021, 595(7868): 516-520. doi: 10.1038/s41586-021-03678-x
|