Plutonium aerosol measurement system based on wavelength shift fiber and silicon photomultiplier
-
摘要: 钚气溶胶测量是进行钚材料相关实验研究的基础。为了确保辐射安全,常需将钚材料密封于密闭容器内以实现对钚气溶胶的包容,商用钚气溶胶监测设备由于难以放入含钚密闭容器而不适用于该应用场景下钚气溶胶浓度的监测。使用ZnS(Ag)闪烁体作为辐射灵敏材料放置于含钚密闭容器内,通过波移光纤将闪烁体信号引出密闭容器,并通过硅光电倍增管实现对闪烁体信号的采集,使用该技术路线建立的钚气溶胶测量系统能够用于密闭容器内钚气溶胶的测量。该测量系统可根据具体需求实现对探测器尺寸、形状的定制,具有功耗低,结构相对简单等优点,实现了密闭容器内钚气溶胶的远程就地测量,具备n/γ混合辐射场下α粒子甄别测量能力。Abstract: It is necessary to monitor plutonium aerosol when doing experimental research with plutonium material. Plutonium material experiments are usually carried out in sealed containers, which guarantees that the plutonium aerosol will not leak out to the environment. The widely-used monitoring equipment are not suitable for plutonium aerosol monitoring in sealed containers because of its large volume. A new plutonium aerosol measurement system based on wavelength shift fiber and silicon photomultiplier (SiPM) is developed. In the new plutonium aerosol measurement system, ZnS(Ag) scintillator is used as detection material and wavelength shift fiber is used as photon transmission media . The new plutonium aerosol measurement system has the advantages of customizable detector size and shape, low power consumption, and relatively simple structure, which realizes remote measurement of plutonium aerosol in sealed containers. The measurement system can also discriminate α particles in n/γ-mixed radiation field.
-
Key words:
- plutonium aerosol /
- scintillator /
- wavelength shift fiber /
- silicon photomultiplier /
- sealed container
-
表 2 ZnS(Ag)闪烁体源响应测试结果
Table 2. Test results of ZnS(Ag) detector’s reference response
No. mass thickness of
ZnS(Ag)/(mg·cm−2)characteristic of
spectrumcounting rate of
α spectrum/s−1peak position of α
spectrum channel1 3.75 α peak overlapped with background noise 69.36 124.88 2 6.53 α peak overlapped with background noise 132.50 124.53 3 7.62 visible distinction 316.02 138.12 4 14.69 visible distinction 396.75 150.66 5 26.85 visible distinction 463.48 164.50 6 62.85 visible distinction 478.95 172.34 7 123.95 visible distinction 499.39 183.86 表 1 典型情况下测量系统理论探测限
Table 1. Theoretical detection limits of the measurement system
measurement time/min detection limit/(Bq·m−3) 1 2900 10 330 30 134 60 81 480 23 1440 13 -
[1] 罗文宗, 张文青. 钚的分析化学[M]. 北京: 原子能出版社, 1991Luo Wenzong, Zhang Wenqing. Analytical chemistry of plutonium[M]. Beijing: Atomic Energy Press, 1991 [2] 李惠彬. 高氡环境下钚气溶胶连续监测技术研究及设备研制[D]. 北京: 清华大学, 2013: 1-3Li Huibin. Research on continuous plutonium aerosol monitor in high radon environment and equipment development[D]. Beijing: Tsinghua University, 2013: 1-3 [3] ThermoFisher Sxientific. Alpha-7A alpha particulate continuous air monitor[EB/OL]. [2022-04-05]. https://www.thermofisher.cn/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.cn%2FTFS-Assets%2FLSG%2FSpecification-Sheets%2FD10058~.pdf. [4] Mirion Technologies. ABPM 203MTM mobile alpha beta particulate monitor[EB/OL]. [2022-04-05]. https://mirion.s3.amazonaws.com/cms4_mirion/files/pdf/spec-sheets/144101en-i_abpm-203m-mobile-alpha-beta-particulate-monitor.pdf?1580935176. [5] Mirion Technologies. Alpha sentry Detection HeadTM[EB/OL]. [2022-04-05]. https://mirion.s3.amazonaws.com/cms4_mirion/files/pdf/spec-sheets/doc013209en-b_alpha_sentry_detection_head.pdf?1581955739. [6] Hoover M D, Newton G J. Performance testing of continuous air monitors for alpha-emitting radionuclides[J]. Radiat Prot Dosim, 1998, 79(1/4): 499-504. [7] García-Toraño E. A comparative study of minimization methods in the fitting of alpha-particle spectra[J]. Nucl Instrum Methods Phys Res Sect A, 1996, 369(2/3): 608-612. [8] Bortels G, Hurtgen C, Santry D. Nuclide analysis on low-statistics alpha-particle spectra: an experimental verification for Pu isotopes[J]. Appl Radiat Isot, 1995, 46(11): 1135-1144. doi: 10.1016/0969-8043(95)00156-8 [9] Sánchez A M, Montero P R. Simplifying data fitting using branching ratios as constraints in alpha spectrometry[J]. Nucl Instrum Methods Phys Res Sect A, 1999, 420(3): 481-488. doi: 10.1016/S0168-9002(98)01179-6 [10] Montero M P R, Orellana C J G, Velasco H G, et al. Fast adaptive alpha-particle spectrum fitting algorithm based on genetically estimated initial parameters[J]. Appl Radiat Isot, 2004, 60(2/4): 145-149. [11] Montero M P R, Sánchez A M, Lourtau A M C. Isotopic uranium and plutonium analysis by alpha-particle spectrometry[J]. Nucl Instrum Methods Phys Res Sect B, 2004, 213: 429-433. doi: 10.1016/S0168-583X(03)01585-4 [12] 黄宪果, 夏文友, 涂俊, 等. α放射性气溶胶连续测量的本底扣除技术及探测灵敏度研究[J]. 辐射防护, 2015, 35(2):93-96Huang Xianguo, Xia Wenyou, Tu Jun, et al. Research on nuclide natural background correction and detection sensitivity of continuous monitoring of alpha aerosols[J]. Radiat Prot, 2015, 35(2): 93-96 [13] 孟丹, 杨柳, 马英豪, 等. 高氡环境下放射性气溶胶在线监测仪的研制[J]. 辐射防护, 2020, 40(6):571-576Meng Dan, Yang Liu, Ma Yinghao, et al. Development of an on-line continuous aerosol monitor suitable for high radon environment[J]. Radiat Prot, 2020, 40(6): 571-576 [14] 谷铁男. 人工α放射性气溶胶监测中能量甄别方法研究[D]. 北京: 清华大学, 2012Gu Tienan. Study on energy discrimination method in artificial α radioactive aerosol monitoring[D]. Beijing: Tsinghua University, 2012 [15] 涂俊, 黄宪果, 穆龙, 等. 金硅面垒型半导体探测器在氢气环境下失效现象的实验研究[J]. 辐射防护通讯, 2012, 32(1):18-20 doi: 10.3969/j.issn.1004-6356.2012.01.004Tu Jun, Huang Xianguo, Mu Long, et al. Research of failure of Au-Si surface barrier semiconductor detector in hydrogen condition[J]. Radiat Prot Bull, 2012, 32(1): 18-20 doi: 10.3969/j.issn.1004-6356.2012.01.004 [16] 汪传高, 骆志平, 庞洪超, 等. 低水平放射性测量的判断限和探测限[J]. 中国辐射卫生, 2018, 27(6):590-594 doi: 10.13491/j.issn.1004-714x.2018.06.020Wang Chuangao, Luo Zhiping, Pang Hongchao, et al. Decision threshold and detection limit in low-levels of radioactivity measurements[J]. Chin J Radial Health, 2018, 27(6): 590-594 doi: 10.13491/j.issn.1004-714x.2018.06.020