留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于波移光纤及硅光电倍增管的钚气溶胶测量系统

夏文友 郝樊华 吴健

夏文友, 郝樊华, 吴健. 基于波移光纤及硅光电倍增管的钚气溶胶测量系统[J]. 强激光与粒子束, 2022, 34: 116004. doi: 10.11884/HPLPB202234.220101
引用本文: 夏文友, 郝樊华, 吴健. 基于波移光纤及硅光电倍增管的钚气溶胶测量系统[J]. 强激光与粒子束, 2022, 34: 116004. doi: 10.11884/HPLPB202234.220101
Xia Wenyou, Hao Fanhua, Wu Jian. Plutonium aerosol measurement system based on wavelength shift fiber and silicon photomultiplier[J]. High Power Laser and Particle Beams, 2022, 34: 116004. doi: 10.11884/HPLPB202234.220101
Citation: Xia Wenyou, Hao Fanhua, Wu Jian. Plutonium aerosol measurement system based on wavelength shift fiber and silicon photomultiplier[J]. High Power Laser and Particle Beams, 2022, 34: 116004. doi: 10.11884/HPLPB202234.220101

基于波移光纤及硅光电倍增管的钚气溶胶测量系统

doi: 10.11884/HPLPB202234.220101
详细信息
    作者简介:

    夏文友,706969241@qq.com

  • 中图分类号: TL812+.1

Plutonium aerosol measurement system based on wavelength shift fiber and silicon photomultiplier

  • 摘要: 钚气溶胶测量是进行钚材料相关实验研究的基础。为了确保辐射安全,常需将钚材料密封于密闭容器内以实现对钚气溶胶的包容,商用钚气溶胶监测设备由于难以放入含钚密闭容器而不适用于该应用场景下钚气溶胶浓度的监测。使用ZnS(Ag)闪烁体作为辐射灵敏材料放置于含钚密闭容器内,通过波移光纤将闪烁体信号引出密闭容器,并通过硅光电倍增管实现对闪烁体信号的采集,使用该技术路线建立的钚气溶胶测量系统能够用于密闭容器内钚气溶胶的测量。该测量系统可根据具体需求实现对探测器尺寸、形状的定制,具有功耗低,结构相对简单等优点,实现了密闭容器内钚气溶胶的远程就地测量,具备n/γ混合辐射场下α粒子甄别测量能力。
  • 图  1  钚气溶胶测量系统示意图

    Figure  1.  Schematic diagram of the plutonium aerosol measurement system

    图  2  ZnS(Ag)探测器测量几何模型

    Figure  2.  Measurement geometry of ZnS(Ag) detector

    图  3  模拟获得的α和γ射线在ZnS(Ag)探测器中的能量沉积谱

    Figure  3.  Energy spectra of ZnS(Ag) detector

    图  4  探测器探测效率随阈值的变化关系

    Figure  4.  Relationship between detection efficiency and threshold

    图  5  探测器探测效率随ZnS(Ag)灵敏面积的变化关系

    Figure  5.  Relationship between detection efficiency and sensitive area of ZnS(Ag)

    图  6  探测器探测效率随狭层腔体厚度的变化关系

    Figure  6.  Relationship between detection efficiency and thickness of narrow chamber

    图  7  不同质量厚度ZnS(Ag)闪烁体源响应能谱

    Figure  7.  Reference response spectra of ZnS(Ag) scintillator with different mass thickness

    图  8  能峰计数率及能峰峰位与ZnS(Ag)涂层质量厚度关系

    Figure  8.  Relationship between counting rate/peak position of full-energy peak with ZnS(Ag)’s mass thickness

    图  9  α粒子响应谱与其他不同响应谱的叠加能谱

    Figure  9.  Compostion of α particle reference response spectra with other different response spectra

    表  2  ZnS(Ag)闪烁体源响应测试结果

    Table  2.   Test results of ZnS(Ag) detector’s reference response

    No.mass thickness of
    ZnS(Ag)/(mg·cm−2)
    characteristic of
    spectrum
    counting rate of
    α spectrum/s−1
    peak position of α
    spectrum channel
    13.75α peak overlapped with background noise69.36124.88
    26.53α peak overlapped with background noise132.50124.53
    37.62visible distinction316.02138.12
    414.69visible distinction396.75150.66
    526.85visible distinction463.48164.50
    662.85visible distinction478.95172.34
    7123.95visible distinction499.39183.86
    下载: 导出CSV

    表  1  典型情况下测量系统理论探测限

    Table  1.   Theoretical detection limits of the measurement system

    measurement time/mindetection limit/(Bq·m−3)
    12900
    10330
    30134
    6081
    48023
    144013
    下载: 导出CSV
  • [1] 罗文宗, 张文青. 钚的分析化学[M]. 北京: 原子能出版社, 1991

    Luo Wenzong, Zhang Wenqing. Analytical chemistry of plutonium[M]. Beijing: Atomic Energy Press, 1991
    [2] 李惠彬. 高氡环境下钚气溶胶连续监测技术研究及设备研制[D]. 北京: 清华大学, 2013: 1-3

    Li Huibin. Research on continuous plutonium aerosol monitor in high radon environment and equipment development[D]. Beijing: Tsinghua University, 2013: 1-3
    [3] ThermoFisher Sxientific. Alpha-7A alpha particulate continuous air monitor[EB/OL]. [2022-04-05]. https://www.thermofisher.cn/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.cn%2FTFS-Assets%2FLSG%2FSpecification-Sheets%2FD10058~.pdf.
    [4] Mirion Technologies. ABPM 203MTM mobile alpha beta particulate monitor[EB/OL]. [2022-04-05]. https://mirion.s3.amazonaws.com/cms4_mirion/files/pdf/spec-sheets/144101en-i_abpm-203m-mobile-alpha-beta-particulate-monitor.pdf?1580935176.
    [5] Mirion Technologies. Alpha sentry Detection HeadTM[EB/OL]. [2022-04-05]. https://mirion.s3.amazonaws.com/cms4_mirion/files/pdf/spec-sheets/doc013209en-b_alpha_sentry_detection_head.pdf?1581955739.
    [6] Hoover M D, Newton G J. Performance testing of continuous air monitors for alpha-emitting radionuclides[J]. Radiat Prot Dosim, 1998, 79(1/4): 499-504.
    [7] García-Toraño E. A comparative study of minimization methods in the fitting of alpha-particle spectra[J]. Nucl Instrum Methods Phys Res Sect A, 1996, 369(2/3): 608-612.
    [8] Bortels G, Hurtgen C, Santry D. Nuclide analysis on low-statistics alpha-particle spectra: an experimental verification for Pu isotopes[J]. Appl Radiat Isot, 1995, 46(11): 1135-1144. doi: 10.1016/0969-8043(95)00156-8
    [9] Sánchez A M, Montero P R. Simplifying data fitting using branching ratios as constraints in alpha spectrometry[J]. Nucl Instrum Methods Phys Res Sect A, 1999, 420(3): 481-488. doi: 10.1016/S0168-9002(98)01179-6
    [10] Montero M P R, Orellana C J G, Velasco H G, et al. Fast adaptive alpha-particle spectrum fitting algorithm based on genetically estimated initial parameters[J]. Appl Radiat Isot, 2004, 60(2/4): 145-149.
    [11] Montero M P R, Sánchez A M, Lourtau A M C. Isotopic uranium and plutonium analysis by alpha-particle spectrometry[J]. Nucl Instrum Methods Phys Res Sect B, 2004, 213: 429-433. doi: 10.1016/S0168-583X(03)01585-4
    [12] 黄宪果, 夏文友, 涂俊, 等. α放射性气溶胶连续测量的本底扣除技术及探测灵敏度研究[J]. 辐射防护, 2015, 35(2):93-96

    Huang Xianguo, Xia Wenyou, Tu Jun, et al. Research on nuclide natural background correction and detection sensitivity of continuous monitoring of alpha aerosols[J]. Radiat Prot, 2015, 35(2): 93-96
    [13] 孟丹, 杨柳, 马英豪, 等. 高氡环境下放射性气溶胶在线监测仪的研制[J]. 辐射防护, 2020, 40(6):571-576

    Meng Dan, Yang Liu, Ma Yinghao, et al. Development of an on-line continuous aerosol monitor suitable for high radon environment[J]. Radiat Prot, 2020, 40(6): 571-576
    [14] 谷铁男. 人工α放射性气溶胶监测中能量甄别方法研究[D]. 北京: 清华大学, 2012

    Gu Tienan. Study on energy discrimination method in artificial α radioactive aerosol monitoring[D]. Beijing: Tsinghua University, 2012
    [15] 涂俊, 黄宪果, 穆龙, 等. 金硅面垒型半导体探测器在氢气环境下失效现象的实验研究[J]. 辐射防护通讯, 2012, 32(1):18-20 doi: 10.3969/j.issn.1004-6356.2012.01.004

    Tu Jun, Huang Xianguo, Mu Long, et al. Research of failure of Au-Si surface barrier semiconductor detector in hydrogen condition[J]. Radiat Prot Bull, 2012, 32(1): 18-20 doi: 10.3969/j.issn.1004-6356.2012.01.004
    [16] 汪传高, 骆志平, 庞洪超, 等. 低水平放射性测量的判断限和探测限[J]. 中国辐射卫生, 2018, 27(6):590-594 doi: 10.13491/j.issn.1004-714x.2018.06.020

    Wang Chuangao, Luo Zhiping, Pang Hongchao, et al. Decision threshold and detection limit in low-levels of radioactivity measurements[J]. Chin J Radial Health, 2018, 27(6): 590-594 doi: 10.13491/j.issn.1004-714x.2018.06.020
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  672
  • HTML全文浏览量:  302
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-08
  • 修回日期:  2022-07-20
  • 网络出版日期:  2022-07-25
  • 刊出日期:  2022-09-20

目录

    /

    返回文章
    返回