留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁驱动加载装置负载区降温系统设计及应用

邓顺益 马骁 傅华 李涛 种涛

邓顺益, 马骁, 傅华, 等. 磁驱动加载装置负载区降温系统设计及应用[J]. 强激光与粒子束, 2022, 34: 085001. doi: 10.11884/HPLPB202234.220103
引用本文: 邓顺益, 马骁, 傅华, 等. 磁驱动加载装置负载区降温系统设计及应用[J]. 强激光与粒子束, 2022, 34: 085001. doi: 10.11884/HPLPB202234.220103
Deng Shunyi, Ma Xiao, Fu Hua, et al. Design and application of cooling system in loading area of magnetically driving device[J]. High Power Laser and Particle Beams, 2022, 34: 085001. doi: 10.11884/HPLPB202234.220103
Citation: Deng Shunyi, Ma Xiao, Fu Hua, et al. Design and application of cooling system in loading area of magnetically driving device[J]. High Power Laser and Particle Beams, 2022, 34: 085001. doi: 10.11884/HPLPB202234.220103

磁驱动加载装置负载区降温系统设计及应用

doi: 10.11884/HPLPB202234.220103
基金项目: 冲击波物理与爆轰物理重点实验室基金项目(6142A03192007)
详细信息
    作者简介:

    邓顺益,eligar@sina.com

    通讯作者:

    种 涛,maoda318@163.com

  • 中图分类号: TG113.25

Design and application of cooling system in loading area of magnetically driving device

  • 摘要: 在材料物性研究中,压力和温度是两个基础的物理量,国内磁驱动加载装置具有压力调节能力,暂不具备样品降温控制技术,针对这一现状设计了一套配合磁驱动加载装置负载区的样品初始降温系统,结合设计的电极板结构和测试探针工装,使负载区电极板与样品、样品与探针固定于设定位置;通过往电极板和探针工装形成的密闭气室内注入压缩低温液氮达到对样品降温的目的;通过真空泵,抽出电极板和探针工装形成的密闭气室内的空气,避免测速探针由于低温凝结空气中的水汽而无法工作。基于该系统开展了低温下铋的斜波压缩实验,获得了−80 ℃初始温度下铋的动力学响应数据,验证了降温系统的可靠性。
  • 图  1  降温实验负载区布局图

    Figure  1.  Flectrode plate and test probe in loading area in cooling experiment

    图  2  降温实验负载区布局图

    Figure  2.  Layout of loading area in cooling experiment

    图  3  不同初始温度铋的斜波加载实验速度曲线

    Figure  3.  Experimental data of ramp wave loading on Bi with different initial temperature

  • [1] Asay J R, Hall C A, Knudson M D. Recent advances in high-pressure equation-of-state capabilities[R]. SAND2000-0849C, 2000.
    [2] Barker L M, Hollenbach R E. Shock-wave studies of PMMA, fused silica, and sapphire[J]. Journal of Applied Physics, 1970, 41(10): 4208-4226. doi: 10.1063/1.1658439
    [3] Barker L M. High-pressure quasi-isentropic impact experiments[M]//Asay J R, Graham R A, Straub G K. Shock Waves in Condensed Matter-1983. Amsterdam: Elsevier, 1984.
    [4] Smith R F, Eggert J H, Saculla M D, et al. Ultrafast dynamic compression technique to study the kinetics of phase transformations in bismuth[J]. Physical Review Letters, 2008, 101: 065701. doi: 10.1103/PhysRevLett.101.065701
    [5] Hall C A, Asay J R, Knudson M D, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading[J]. Review of Scientific Instruments, 2001, 72(9): 3587-3595. doi: 10.1063/1.1394178
    [6] Ao T, Asay J R, Chantrenne S, et al. A compact strip-line pulsed power generator for isentropic compression experiments[J]. Review of Scientific Instruments, 2008, 79: 013903. doi: 10.1063/1.2827509
    [7] Hereil P L, Lassalle F, Avrillaud G. GEPI: an ice generator for dynamic material characterisation and hypervelocity impact[J]. AIP Conference Proceedings, 2004, 706(1): 1209-1212.
    [8] 夏明鹤, 计策, 王玉娟, 等. PTS装置工作模式及波形调节[J]. 强激光与粒子束, 2012, 24(11):2768-2772. (Xia Minghe, Ji Ce, Wang Yujuan, et al. Operation models and waveform shaping of primary test stand[J]. High Power Laser and Particle Beams, 2012, 24(11): 2768-2772 doi: 10.3788/HPLPB20122411.2768

    Xia Minghe, Ji Ce, Wang Yujuan, et al. Operation models and waveform shaping of primary test stand[J]. High Power Laser and Particle Beams, 2012, 24(11): 2768-2772 doi: 10.3788/HPLPB20122411.2768
    [9] Wang Guiji, Sun Chengwei, Tan Fuli, et al. The compact capacitor bank CQ-1.5 employed in magnetically driven isentropic compression and high velocity flyer plate experiments[J]. Review of Scientific Instruments, 2008, 79: 053904. doi: 10.1063/1.2920200
    [10] Wang Guiji, Luo Binqiang, Zhang Xuping, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading[J]. Review of Scientific Instruments, 2013, 84: 015117. doi: 10.1063/1.4788935
    [11] Davis J P, Hayes D B, Asay J R, et al. Investigation of liquid-solid phase transition using isentropic compression experiments (ICE)[J]. AIP Conference Proceedings, 2002, 620(1): 221-224.
    [12] Davis J P, Hayes D B. Isentropic compression experiments on dynamic solidification in tin[J]. AIP Conference Proceedings, 2004, 706(1): 163-166.
    [13] Hare D E, Forbes J W, Reisman D B, et al. Isentropic compression loading of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) and the pressure-induced phase transition at 27 GPa[J]. Applied Physics Letters, 2004, 85(6): 949-951. doi: 10.1063/1.1771464
    [14] Hare D E, Reisman D B, Garcia F, et al. The isentrope of unreacted LX-04 to 170 kbar[J]. AIP Conference Proceedings, 2004, 706(1): 145-148.
    [15] Baer M R, Hall C A, Gustavsen R L, et al. Isentropic loading experiments of a plastic bonded explosive and constituents[J]. Journal of Applied Physics, 2007, 101: 034906. doi: 10.1063/1.2399881
    [16] 种涛, 莫建军, 郑贤旭, 等. 斜波压缩下RDX单晶的动力学特性[J]. 物理学报, 2020, 69:176101. (Chong Tao, Mo Jianjun, Zheng Xianxu, et al. Dynamic behaviors of RDX single crystal under ramp compression[J]. Acta Physica Sinica, 2020, 69: 176101 doi: 10.7498/aps.69.20200318

    Chong Tao, Mo Jianjun, Zheng Xianxu, et al. Dynamic behaviors of RDX single crystal under ramp compression[J]. Acta Physica Sinica, 2020, 69: 176101 doi: 10.7498/aps.69.20200318
    [17] Cai J T, Zhao F, Wang G J, et al. Experimental research on elastic-plastic transition and α to γ phase transformation of RDX crystal under ramp loading[C]//Proceedings of the 2015 International Autumn Seminar on Propellants, Explosives and Pyrotechnics. Qingdao, 2015.
    [18] 种涛, 谭福利, 王桂吉, 等. 磁驱动斜波加载下铋的Ⅰ-Ⅱ-Ⅲ相变实验[J]. 高压物理学报, 2018, 32:051101. (Chong Tao, Tan Fuli, Wang Guiji, et al. Ⅰ-Ⅱ-Ⅲ phase transition of bismuth under magnetically driven ramp wave loading[J]. Chinese Journal of High Pressure Physics, 2018, 32: 051101

    Chong Tao, Tan Fuli, Wang Guiji, et al. Ⅰ-Ⅱ-Ⅲ phase transition of Bismuth under magnetically driven ramp wave loading[J]. Chinese Journal of High Pressure Physics, 2018, 32: 051101
    [19] Zhang Qingling. Adsorption mechanism of different coal ranks under variable temperature and pressure conditions[J]. Journal of China University of Mining & Technology, 2008, 18(3): 395-400.
    [20] Degheidy A R, Elkenany E B. Mechanical properties of GaxIn1-xAsyP1-y/GaAs system at different temperatures and pressures[J]. Chinese Physics B, 2015, 24: 094302. doi: 10.1088/1674-1056/24/9/094302
    [21] Zhou Yongsheng, Jiang Haikun, He Changrong. Experiments of brittle-plastic transition and instability modes of Juyongguan granite at different temperatures and pressures[J]. Earthquake Research in China, 2003, 17(2): 169-182.
    [22] Wu Yuxiao, Yang Ruibo, Li Shusuo, et al. Surface recrystallization of a Ni3Al based single crystal superalloy at different annealing temperature and blasting pressure[J]. Rare Metals, 2012, 31(3): 209-214. doi: 10.1007/s12598-012-0493-8
    [23] Li Weiguo, Wang Ruzhuan, Li Dingyu, et al. Effect of the cooling medium temperature on the thermal shock resistance of ceramic materials[J]. Materials Letters, 2015, 138: 216-218. doi: 10.1016/j.matlet.2014.09.137
    [24] Zhang Xiaoqiang, Gao Huiying, Fu Guozhong, et al. Reliability analysis of filtering reducers considering temperature correction and shock load of space[J]. Journal of Shanghai Jiaotong University (Science), 2018, 23(3): 456-464. doi: 10.1007/s12204-018-1947-4
    [25] Lyzenga G A, Ahrens T J, Nellis W J, et al. The temperature of shock-compressed water[J]. The Journal of Chemical Physics, 1982, 76(12): 6282-6286. doi: 10.1063/1.443031
    [26] Gurrutxaga-Lerma B, Shehadeh M A, Balint D S, et al. The effect of temperature on the elastic precursor decay in shock loaded FCC aluminium and BCC iron[J]. International Journal of Plasticity, 2017, 96: 135-155. doi: 10.1016/j.ijplas.2017.05.001
    [27] Godwal B K, Ng A, Dasilva L. Shock melting and Hugoniot calculations for gold[J]. Physics Letters A, 1990, 144(1): 26-30. doi: 10.1016/0375-9601(90)90042-M
    [28] Li Dingyu, Li Weiguo, Wang Ruzhuan, et al. Influence of thermal shock damage on the flexure strength of alumina ceramic at different temperatures[J]. Materials Letters, 2016, 173: 91-94. doi: 10.1016/j.matlet.2016.03.026
    [29] Ahn J H, Forster C F. The effect of temperature variations on the performance of mesophilic and thermophilic anaerobic filters treating a simulated papermill wastewater[J]. Process Biochemistry, 2002, 37(6): 589-594. doi: 10.1016/S0032-9592(01)00245-X
    [30] Zhang Ningchao, Liu Fusheng, Peng Xiaojian, et al. Light emission properties of sapphire under shock loading in the stress range of 40-120 GPa[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(3): 562-567. doi: 10.1007/s11433-013-5034-4
    [31] Fritz J, Wünnemann K, Reimold W U, et al. Shock experiments on quartz targets pre-cooled to 77 K[J]. International Journal of Impact Engineering, 2011, 38(6): 440-445. doi: 10.1016/j.ijimpeng.2010.10.014
    [32] Bastea M, Bastea S, Emig J A, et al. Kinetics of propagating phase transformation in compressed bismuth[J]. Physical Review B, 2005, 71: 180101. doi: 10.1103/PhysRevB.71.180101
    [33] 蔡进涛. 固体炸药的磁驱动准等熵加载实验技术及动力学行为研究[D]. 绵阳: 中国工程物理研究院, 2018

    Cai Jintao. Experimental techniques and dynamic behavior reseaches on solid explosives under magnetically driven quasi-isentropic compression[D]. Mianyang: China Academy of Engineering Physics, 2018
    [34] 种涛. 斜波加载下铋、锡等典型金属材料的相变动力学研究[D]. 合肥: 中国科学技术大学, 2018

    Chong Tao. Study on kinetics of phase transition of metals under ramp wave loading[D]. Hefei: University of Science and Technology of China, 2018
  • 加载中
图(3)
计量
  • 文章访问数:  553
  • HTML全文浏览量:  241
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-11
  • 修回日期:  2022-06-06
  • 网络出版日期:  2022-06-13
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回