留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向模分复用的偏振保持领结型椭圆芯少模光纤的设计

慈英娟 任芳 张金玉 牛晶晶 雷晓 张燕飞 王晓晖

慈英娟, 任芳, 张金玉, 等. 面向模分复用的偏振保持领结型椭圆芯少模光纤的设计[J]. 强激光与粒子束, 2022, 34: 111006. doi: 10.11884/HPLPB202234.220105
引用本文: 慈英娟, 任芳, 张金玉, 等. 面向模分复用的偏振保持领结型椭圆芯少模光纤的设计[J]. 强激光与粒子束, 2022, 34: 111006. doi: 10.11884/HPLPB202234.220105
Ci Yingjuan, Ren Fang, Zhang Jinyu, et al. Design of polarization-maintaining bow-tie elliptical-core few-mode fiber for mode-division-multiplexing[J]. High Power Laser and Particle Beams, 2022, 34: 111006. doi: 10.11884/HPLPB202234.220105
Citation: Ci Yingjuan, Ren Fang, Zhang Jinyu, et al. Design of polarization-maintaining bow-tie elliptical-core few-mode fiber for mode-division-multiplexing[J]. High Power Laser and Particle Beams, 2022, 34: 111006. doi: 10.11884/HPLPB202234.220105

面向模分复用的偏振保持领结型椭圆芯少模光纤的设计

doi: 10.11884/HPLPB202234.220105
基金项目: 中央高校基本科研业务费专项资金项目(FRF-BD-20-11A)
详细信息
    作者简介:

    慈英娟,ciyingjuan@163.com

    通讯作者:

    任 芳,renfang@ustb.edu.cn

  • 中图分类号: TN252

Design of polarization-maintaining bow-tie elliptical-core few-mode fiber for mode-division-multiplexing

  • 摘要: 提出了一种弱耦合领结型椭圆芯应力保偏少模光纤(PM-FMF),通过使用高折射率纤芯,所提出的光纤可在1505~1585 nm波段下,支持32个独立的本征模式。椭圆纤芯和领结型应力区的引入,有效地分离了相邻的本征模式。采用有限元法对领结型椭圆芯应力PM-FMF的纤芯及领结型应力区的结构参数进行优化。评估了光纤参数对模式数量、模式间的最小有效折射率差、模态双折射、应力双折射以及弯曲损耗的影响。此外还分析了该光纤的带宽性能,包括模式间的有效折射率、有效折射率差、差分模式时延(DMD)。经数据分析,在1505~1585 nm波段下,该光纤支持的32个本征模式是完全分离的,相邻模式之间的最小有效折射率差大于1.295×10−4。所提出的弱耦合保偏少模光纤能够提高传输容量,在本征模式复用传输中具有潜在的应用前景。
  • 图  1  光纤的结构

    Figure  1.  Schematic diagram of fiber structure

    图  2  纤芯尺寸对光纤性能的影响

    Figure  2.  Variations of the optical performance as a function of core size

    图  3  光纤支持的模式数量和Δneff, minΔ的变化

    Figure  3.  Variation of number of supported modes and Δneff, min as a function of

    图  4  光纤性能随应力区参数的变化

    Figure  4.  Variation of the optical performance with stress-applying area parameters

    图  5  应力区参数对光纤性能的影响

    Figure  5.  Variation of the optical performance with stress-applying area parameters

    图  6  所设计的椭圆纤芯领结型PM-FMF的32个本征模式的电场分布和电场矢量图(白色箭头)

    Figure  6.  Mode field distributions with electric vectors (white arrows) of the proposed bow-tie elliptical-core PM-FMF

    图  7  光纤的双折射特性

    Figure  7.  Birefringence properties of optical fibers

    图  8  光纤的弯曲损耗特性

    Figure  8.  Bending loss characteristics of optical fibers

    图  9  光纤性能对波长的依赖性

    Figure  9.  Variations of the optical performance as a function of wavelength

    图  10  DMD随波长的变化

    Figure  10.  Variations of DMD as a function of wavelength

    表  1  领结型椭圆芯PM-FMF中32个本征模式在1550 nm波长处的neff、ΔneffAeff、DMD

    Table  1.   neff, Δneff, Aeff and DMD of the 32 eigenmodes for bow-tie elliptical-core PM-FMF at 1550 nm

    modeneffΔneff/10−4Aeff/µm2δDMD/(ns/km)
    HG00x1.46834.80390.961.727
    HG00y1.467818.87890.88−7.946
    HG10x1.46594.79987.011.776
    HG10y1.465410.45086.78−4.804
    HG01x1.46444.93280.481.627
    HG01y1.463914.08180.72−7.396
    HG20x1.46254.64084.711.847
    HG20y1.46209.19884.08−4.247
    HG11x1.46115.03387.211.684
    HG11y1.460623.28687.53−6.646
    HG02x1.45832.17473.55−3.479
    HG30x1.45802.88885.345.077
    HG02y1.45781.61274.48−3.209
    HG30y1.45766.84284.59−3.450
    HG21x1.45694.93189.151.768
    HG21y1.456425.22389.04−5.824
    HG12x1.45395.13785.891.672
    HG12y1.45346.79787.06−8.065
    HG40x1.45274.35488.852.089
    HG40y1.45234.01588.74−2.916
    HG31x1.45194.70992.051.999
    HG31y1.451410.42190.673.810
    HG03x1.45035.03775.361.989
    HG03y1.449811.70378.29−9.013
    HG22x1.44874.95693.591.924
    HG22y1.448215.79494.47−11.048
    HG50x1.44664.10194.892.184
    HG50y1.44621.624108.82−2.394
    HG41x1.44604.353110.141.893
    HG41y1.44562.60194.4915.396
    HG13x1.44534.811105.193.261
    HG13y1.4448110.30
    下载: 导出CSV
  • [1] Hossain S B, Rahman T, Stojanović N, et al. Transmission beyond 200 Gbit/s with IM/DD system for campus and intra-datacenter network applications[J]. IEEE Photonics Technology Letters, 2021, 33(5): 263-266. doi: 10.1109/LPT.2021.3056005
    [2] Behera B, Mohanty M N. Design of bend-limited large-mode area dispersion shifted few-mode fiber for fast communication[C]//Proceedings of 2019 International Conference on Applied Machine Learning (ICAML). 2019.
    [3] Essiambre R J, Kramer G, Winzer P J, et al. Capacity limits of optical fiber networks[J]. Journal of Lightwave Technology, 2010, 28(4): 662-701. doi: 10.1109/JLT.2009.2039464
    [4] Mizuno T, Miyamoto Y. High-capacity dense space division multiplexing transmission[J]. Optical Fiber Technology, 2017, 35: 108-117. doi: 10.1016/j.yofte.2016.09.015
    [5] Bigot-Astruc M, Boivin D, Sillard P. Design and fabrication of weakly-coupled few-modes fibers[C]//Proceedings of 2012 IEEE Photonics Society Summer Topical Meeting Series. 2012.
    [6] Yang Yi, Mo Qi, Fu Songnian, et al. Panda type elliptical core few-mode fiber[J]. APL Photonics, 2019, 4: 022901. doi: 10.1063/1.5038119
    [7] Xiao Han, Li Haisu, Wu Beilei, et al. Elliptical hollow-core optical fibers for polarization-maintaining few-mode guidance[J]. Optical Fiber Technology, 2019, 48: 7-11. doi: 10.1016/j.yofte.2018.12.003
    [8] Sun Yi, Lingle R, McCurdy A, et al. Few-mode fibers for mode-division multiplexing[C]//Proceedings of 2013 IEEE Photonics Society Summer Topical Meeting Series. 2013: 80-81.
    [9] Zhao Jiajia, Tang Ming, Oh K, et al. Polarization-maintaining few mode fiber composed of a central circular-hole and an elliptical-ring core[J]. Photonics Research, 2017, 5(3): 261-266. doi: 10.1364/PRJ.5.000261
    [10] Zhang Jiwei, Wang Guorui, Zhang Han, et al. A weakly-coupled few-mode optical fiber with a graded concave high-index-ring[J]. IEEE Photonics Journal, 2021, 13: 7200710.
    [11] LaRochelle S, Corsi A, Chang J H, et al. Polarization maintaining few mode fibers for space division multiplexing[C]//Proceedings of 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). 2018.
    [12] Riesen N, Love J D, Arkwright J W. Few-mode elliptical-core fiber data transmission[J]. IEEE Photonics Technology Letters, 2012, 24(5): 344-346. doi: 10.1109/LPT.2011.2178825
    [13] Brunet C, Vaity P, Messaddeq Y, et al. Design, fabrication and validation of an OAM fiber supporting 36 states[J]. Optics Express, 2014, 22(21): 26117-26127. doi: 10.1364/OE.22.026117
    [14] Yang Tongxin, Zhang Hu, Xi Lixia, et al. Design of 18-mode hole-assisted elliptical-core polarization-maintaining few-mode fiber[J]. Optics Communications, 2022, 507: 127647. doi: 10.1016/j.optcom.2021.127647
    [15] Teng Fei, Jin Zhen, Chen Shuo, et al. Neural network for the inverse design of polarization-maintaining few-mode panda-type ring-core fiber[C]//Proceedings of 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). 2020: 1-3.
    [16] Du Zhiyong, Wang Chuncan, Li Peixin, et al. Fully degeneracy-lifted PANDA few-mode fiber based on the segmented ring-core[J]. Optik, 2022, 255: 168710. doi: 10.1016/j.ijleo.2022.168710
    [17] Jundt D H. Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate[J]. Optics Letters, 1997, 22(20): 1553-1555. doi: 10.1364/OL.22.001553
    [18] Wemple S H, Pinnow D A, Rich T C, et al. Binary SiO2–B2O3 glass system: refractive index behavior and energy gap considerations[J]. Journal of Applied Physics, 1973, 44(12): 5432-5437. doi: 10.1063/1.1662170
    [19] Guan Rongfeng, Zhu Fulong, Gan Zhiyin, et al. Stress birefringence analysis of polarization maintaining optical fibers[J]. Optical Fiber Technology, 2005, 11(3): 240-254. doi: 10.1016/j.yofte.2004.10.002
    [20] Milione G, Ip E, Ji P, et al. MIMO-less space division multiplexing with elliptical core optical fibers[C]//Proceedings of 2017 Optical Fiber Communication Conference. 2017.
    [21] Kasahara M, Saitoh K, Sakamoto T, et al. Design of three-spatial-mode ring-core fiber[J]. Journal of Lightwave Technology, 2014, 32(7): 1337-1343. doi: 10.1109/JLT.2014.2304732
    [22] Hu Tao, Li Juhao, Ge Dawei, et al. Weakly-coupled 4-mode step-index FMF and demonstration of IM/DD MDM transmission[J]. Optics Express, 2018, 26(7): 8356-8363. doi: 10.1364/OE.26.008356
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  740
  • HTML全文浏览量:  285
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-12
  • 修回日期:  2022-06-13
  • 录用日期:  2022-06-23
  • 网络出版日期:  2022-06-27
  • 刊出日期:  2022-09-20

目录

    /

    返回文章
    返回