Design of polarization-maintaining bow-tie elliptical-core few-mode fiber for mode-division-multiplexing
-
摘要: 提出了一种弱耦合领结型椭圆芯应力保偏少模光纤(PM-FMF),通过使用高折射率纤芯,所提出的光纤可在1505~1585 nm波段下,支持32个独立的本征模式。椭圆纤芯和领结型应力区的引入,有效地分离了相邻的本征模式。采用有限元法对领结型椭圆芯应力PM-FMF的纤芯及领结型应力区的结构参数进行优化。评估了光纤参数对模式数量、模式间的最小有效折射率差、模态双折射、应力双折射以及弯曲损耗的影响。此外还分析了该光纤的带宽性能,包括模式间的有效折射率、有效折射率差、差分模式时延(DMD)。经数据分析,在1505~1585 nm波段下,该光纤支持的32个本征模式是完全分离的,相邻模式之间的最小有效折射率差大于1.295×10−4。所提出的弱耦合保偏少模光纤能够提高传输容量,在本征模式复用传输中具有潜在的应用前景。Abstract: We propose a weakly coupled polarization-maintaining few-mode fiber (PM-FMF) design with elliptical-core and bow-tie stress-applying areas. Using a high refractive index core, the proposed fiber can support 32 independent eigenmodes in the 1505−1585 nm band. The combination of the elliptical-core and bow-tie stress-applying area effectively separates the adjacent eigenmodes. The structural parameters of the elliptical-core and the bow-tie stress-applying area of the PM-FMF are optimized using the finite element method. The effects of fiber parameters on the number of modes, the minimum effective refractive index difference (Δneff, mim) between modes, the mode birefringence Bm, the stress birefringence Bs, and the bending loss are evaluated. The bandwidth performance of the fiber is also analyzed, including the effective refractive index neff, Δneff and differential mode delay (DMD) between adjacent modes. The results indicate that 32 eigenmodes supported by the fiber are completely separated with Δneff, min between adjacent modes larger than 1.295×10−4 in the 1505−1585 nm band. The fiber proposed can improve the transmission capacity and has potential applications in eigenmode multiplexing transmission.
-
表 1 领结型椭圆芯PM-FMF中32个本征模式在1550 nm波长处的neff、Δneff、Aeff、DMD
Table 1. neff, Δneff, Aeff and DMD of the 32 eigenmodes for bow-tie elliptical-core PM-FMF at 1550 nm
mode neff Δneff/10−4 Aeff/µm2 δDMD/(ns/km) HG00x 1.4683 4.803 90.96 1.727 HG00y 1.4678 18.878 90.88 −7.946 HG10x 1.4659 4.799 87.01 1.776 HG10y 1.4654 10.450 86.78 −4.804 HG01x 1.4644 4.932 80.48 1.627 HG01y 1.4639 14.081 80.72 −7.396 HG20x 1.4625 4.640 84.71 1.847 HG20y 1.4620 9.198 84.08 −4.247 HG11x 1.4611 5.033 87.21 1.684 HG11y 1.4606 23.286 87.53 −6.646 HG02x 1.4583 2.174 73.55 −3.479 HG30x 1.4580 2.888 85.34 5.077 HG02y 1.4578 1.612 74.48 −3.209 HG30y 1.4576 6.842 84.59 −3.450 HG21x 1.4569 4.931 89.15 1.768 HG21y 1.4564 25.223 89.04 −5.824 HG12x 1.4539 5.137 85.89 1.672 HG12y 1.4534 6.797 87.06 −8.065 HG40x 1.4527 4.354 88.85 2.089 HG40y 1.4523 4.015 88.74 −2.916 HG31x 1.4519 4.709 92.05 1.999 HG31y 1.4514 10.421 90.67 3.810 HG03x 1.4503 5.037 75.36 1.989 HG03y 1.4498 11.703 78.29 −9.013 HG22x 1.4487 4.956 93.59 1.924 HG22y 1.4482 15.794 94.47 −11.048 HG50x 1.4466 4.101 94.89 2.184 HG50y 1.4462 1.624 108.82 −2.394 HG41x 1.4460 4.353 110.14 1.893 HG41y 1.4456 2.601 94.49 15.396 HG13x 1.4453 4.811 105.19 3.261 HG13y 1.4448 − 110.30 − -
[1] Hossain S B, Rahman T, Stojanović N, et al. Transmission beyond 200 Gbit/s with IM/DD system for campus and intra-datacenter network applications[J]. IEEE Photonics Technology Letters, 2021, 33(5): 263-266. doi: 10.1109/LPT.2021.3056005 [2] Behera B, Mohanty M N. Design of bend-limited large-mode area dispersion shifted few-mode fiber for fast communication[C]//Proceedings of 2019 International Conference on Applied Machine Learning (ICAML). 2019. [3] Essiambre R J, Kramer G, Winzer P J, et al. Capacity limits of optical fiber networks[J]. Journal of Lightwave Technology, 2010, 28(4): 662-701. doi: 10.1109/JLT.2009.2039464 [4] Mizuno T, Miyamoto Y. High-capacity dense space division multiplexing transmission[J]. Optical Fiber Technology, 2017, 35: 108-117. doi: 10.1016/j.yofte.2016.09.015 [5] Bigot-Astruc M, Boivin D, Sillard P. Design and fabrication of weakly-coupled few-modes fibers[C]//Proceedings of 2012 IEEE Photonics Society Summer Topical Meeting Series. 2012. [6] Yang Yi, Mo Qi, Fu Songnian, et al. Panda type elliptical core few-mode fiber[J]. APL Photonics, 2019, 4: 022901. doi: 10.1063/1.5038119 [7] Xiao Han, Li Haisu, Wu Beilei, et al. Elliptical hollow-core optical fibers for polarization-maintaining few-mode guidance[J]. Optical Fiber Technology, 2019, 48: 7-11. doi: 10.1016/j.yofte.2018.12.003 [8] Sun Yi, Lingle R, McCurdy A, et al. Few-mode fibers for mode-division multiplexing[C]//Proceedings of 2013 IEEE Photonics Society Summer Topical Meeting Series. 2013: 80-81. [9] Zhao Jiajia, Tang Ming, Oh K, et al. Polarization-maintaining few mode fiber composed of a central circular-hole and an elliptical-ring core[J]. Photonics Research, 2017, 5(3): 261-266. doi: 10.1364/PRJ.5.000261 [10] Zhang Jiwei, Wang Guorui, Zhang Han, et al. A weakly-coupled few-mode optical fiber with a graded concave high-index-ring[J]. IEEE Photonics Journal, 2021, 13: 7200710. [11] LaRochelle S, Corsi A, Chang J H, et al. Polarization maintaining few mode fibers for space division multiplexing[C]//Proceedings of 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). 2018. [12] Riesen N, Love J D, Arkwright J W. Few-mode elliptical-core fiber data transmission[J]. IEEE Photonics Technology Letters, 2012, 24(5): 344-346. doi: 10.1109/LPT.2011.2178825 [13] Brunet C, Vaity P, Messaddeq Y, et al. Design, fabrication and validation of an OAM fiber supporting 36 states[J]. Optics Express, 2014, 22(21): 26117-26127. doi: 10.1364/OE.22.026117 [14] Yang Tongxin, Zhang Hu, Xi Lixia, et al. Design of 18-mode hole-assisted elliptical-core polarization-maintaining few-mode fiber[J]. Optics Communications, 2022, 507: 127647. doi: 10.1016/j.optcom.2021.127647 [15] Teng Fei, Jin Zhen, Chen Shuo, et al. Neural network for the inverse design of polarization-maintaining few-mode panda-type ring-core fiber[C]//Proceedings of 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). 2020: 1-3. [16] Du Zhiyong, Wang Chuncan, Li Peixin, et al. Fully degeneracy-lifted PANDA few-mode fiber based on the segmented ring-core[J]. Optik, 2022, 255: 168710. doi: 10.1016/j.ijleo.2022.168710 [17] Jundt D H. Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate[J]. Optics Letters, 1997, 22(20): 1553-1555. doi: 10.1364/OL.22.001553 [18] Wemple S H, Pinnow D A, Rich T C, et al. Binary SiO2–B2O3 glass system: refractive index behavior and energy gap considerations[J]. Journal of Applied Physics, 1973, 44(12): 5432-5437. doi: 10.1063/1.1662170 [19] Guan Rongfeng, Zhu Fulong, Gan Zhiyin, et al. Stress birefringence analysis of polarization maintaining optical fibers[J]. Optical Fiber Technology, 2005, 11(3): 240-254. doi: 10.1016/j.yofte.2004.10.002 [20] Milione G, Ip E, Ji P, et al. MIMO-less space division multiplexing with elliptical core optical fibers[C]//Proceedings of 2017 Optical Fiber Communication Conference. 2017. [21] Kasahara M, Saitoh K, Sakamoto T, et al. Design of three-spatial-mode ring-core fiber[J]. Journal of Lightwave Technology, 2014, 32(7): 1337-1343. doi: 10.1109/JLT.2014.2304732 [22] Hu Tao, Li Juhao, Ge Dawei, et al. Weakly-coupled 4-mode step-index FMF and demonstration of IM/DD MDM transmission[J]. Optics Express, 2018, 26(7): 8356-8363. doi: 10.1364/OE.26.008356