Application of liquid film targets in laser-driven radiation sources and laser ion acceleration
-
摘要: 流动的无支撑液体薄膜在各个领域有着广泛应用。超强激光作用在这样的薄膜上,可产生涵盖太赫兹到伽马射线的高亮度次级辐射及高能的离子,并具有高重频、低成本、可连续工作等显著优势。概述了液体薄膜靶的制备和表征方法,阐明了液体薄膜靶相对于传统靶材的特性和优势,并对其在激光驱动辐射源和激光离子加速中的应用做出了总结和展望。Abstract: Flowing unsupported liquid thin films are widely used in various fields. Energetic ions and high brightness secondary radiation covering THz to gamma rays will be generated when super intense laser acting on such a film, with the significant advantages of high repetition-rate, low cost and continuous operation. Methods for preparing liquid films include impinging jets, converging nozzle, gas-dynamic nozzle and wire-guided jet, each with its own characteristics, which can be measured by optical diagnosis. White light interference and monochromatic light interferometry are introduced, and an example is given to illustrate these two methods. This paper provides an overview of the preparation and characterization of liquid thin film target, and summarizes its applications and prospect in laser-driven radiation sources as well as laser ion acceleration.
-
表 1 常见液膜制备方法的特点
Table 1. Characteristics of the common liquid film preparation methods
method minimum thickness/nm other features impinging jets 450 high adjustability, complex device, low stability converging nozzle 250 simple device, high stability, low adjustability gas-dynamic nozzle ~20 simple device, high stability, cannot be used in vacuum wire-guided jet ~5000 simple device, low repetition rate capability -
[1] Hasson D, Peck R E. Thickness distribution in a sheet formed by impinging jets[J]. AIChE Journal, 1964, 10(5): 752-754. doi: 10.1002/aic.690100533 [2] Watanabe A, Saito H, Ishida Y, et al. A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers[J]. Optics Communications, 1989, 71(5): 301-304. doi: 10.1016/0030-4018(89)90012-6 [3] Ekimova M, Quevedo W, Faubel M, et al. A liquid flatjet system for solution phase soft-X-ray spectroscopy[J]. Structural Dynamics, 2015, 2: 054301. doi: 10.1063/1.4928715 [4] Koralek J D, Kim J B, Brůža P, et al. Generation and characterization of ultrathin free-flowing liquid sheets[J]. Nature Communications, 2018, 9: 1353. doi: 10.1038/s41467-018-03696-w [5] Nunes J P F, Ledbetter K, Lin M, et al. Liquid-phase mega-electron-volt ultrafast electron diffraction[J]. Structural Dynamics, 2020, 7: 024301. doi: 10.1063/1.5144518 [6] Loh Z H, Doumy G, Arnold C, et al. Observation of the fastest chemical processes in the radiolysis of water[J]. Science, 2020, 367(6474): 179-182. doi: 10.1126/science.aaz4740 [7] Smith A D, Balčiu̅nas T, Chang Y P, et al. Femtosecond soft-X-ray absorption spectroscopy of liquids with a water-window high-harmonic source[J]. The Journal of Physical Chemistry Letters, 2020, 11(6): 1981-1988. doi: 10.1021/acs.jpclett.9b03559 [8] Yang Jie, Dettori R, Nunes J P F, et al. Direct observation of ultrafast hydrogen bond strengthening in liquid water[J]. Nature, 2021, 596(7873): 531-535. doi: 10.1038/s41586-021-03793-9 [9] Lin M F, Singh N, Liang S, et al. Imaging the short-lived hydroxyl-hydronium pair in ionized liquid water[J]. Science, 2021, 374(6563): 92-95. doi: 10.1126/science.abg3091 [10] Corde S, Phuoc K T, Lambert G, et al. Femtosecond X rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1 [11] Cipiccia S, Islam M R, Ersfeld B, et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake[J]. Nature Physics, 2011, 7(11): 867-871. doi: 10.1038/nphys2090 [12] 马文君, 刘志鹏, 王鹏杰, 等. 激光加速高能质子实验研究进展及新加速方案[J]. 物理学报, 2021, 70:084102. (Ma Wenjun, Liu Zhipeng, Wang Pengjie, et al. Experimental progress of laser-driven high-energy proton acceleration and new acceleration schemes[J]. Acta Physica Sinica, 2021, 70: 084102 doi: 10.7498/aps.70.20202115Ma Wenjun, Liu Zhipeng, Wang Pengjie, et al. Experimental progress of laser-driven high-energy proton acceleration and new acceleration schemes[J]. Acta Physica Sinica, 2021, 70: 084102 doi: 10.7498/aps.70.20202115 [13] Daido H, Nishiuchi M, Pirozhkov A S. Review of laser-driven ion sources and their applications[J]. Reports on Progress in Physics, 2012, 75: 056401. doi: 10.1088/0034-4885/75/5/056401 [14] Hussein A E, Senabulya N, Ma Y, et al. Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures[J]. Scientific Reports, 2019, 9: 3249. doi: 10.1038/s41598-019-39845-4 [15] Savart F. Mémoire sur le choc d’une veine liquide lancée contre un plan circulaire[J]. Ann de Chim, 1833, 54: 56-87. [16] Taylor G I. The dynamics of thin-sheets of fluid. I. Water bells[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1959, 253(1274): 289-295. [17] Bush J W M, Hasha A E. On the collision of laminar jets: fluid chains and fishbones[J]. Journal of Fluid Mechanics, 2004, 511: 285-310. doi: 10.1017/S002211200400967X [18] Li Ri, Ashgriz N. Characteristics of liquid sheets formed by two impinging jets[J]. Physics of Fluids, 2006, 18: 087104. doi: 10.1063/1.2338064 [19] Choo Y J, Kang B S. The effect of jet velocity profile on the characteristics of thickness and velocity of the liquid sheet formed by two impinging jets[J]. Physics of Fluids, 2007, 19: 112101. doi: 10.1063/1.2795780 [20] Yang Lijun, Zhao Fei, Fu Qingfei, et al. Liquid sheet formed by impingement of two viscous jets[J]. Journal of Propulsion and Power, 2014, 30(4): 1016-1026. doi: 10.2514/1.B35105 [21] Chen Xiaodong, Yang V. Recent advances in physical understanding and quantitative prediction of impinging-jet dynamics and atomization[J]. Chinese Journal of Aeronautics, 2019, 32(1): 45-57. doi: 10.1016/j.cja.2018.10.010 [22] Lu Jiakai, Corvalan C M. Influence of viscosity on the impingement of laminar liquid jets[J]. Chemical Engineering Science, 2014, 119: 182-186. doi: 10.1016/j.ces.2014.08.024 [23] Panão M R O, Delgado J M D. Effect of pre-impingement length and misalignment in the hydrodynamics of multijet impingement atomization[J]. Physics of Fluids, 2013, 25: 012105. doi: 10.1063/1.4774347 [24] Kashanj S, Kebriaee A. The effects of different jet velocities and axial misalignment on the liquid sheet of two colliding jets[J]. Chemical Engineering Science, 2019, 206: 235-248. doi: 10.1016/j.ces.2019.05.015 [25] Morrison J T, Feister S, Frische K D, et al. MeV proton acceleration at kHz repetition rate from ultra-intense laser liquid interaction[J]. New Journal of Physics, 2018, 20: 022001. doi: 10.1088/1367-2630/aaa8d1 [26] Baber R, Mazzei L, Thanh N T K, et al. Synthesis of silver nanoparticles using a microfluidic impinging jet reactor[J]. Journal of Flow Chemistry, 2016, 6(3): 268-278. doi: 10.1556/1846.2016.00015 [27] Pal S, Madane K, Kulkarni A A. Antisolvent based precipitation: batch, capillary flow reactor and impinging jet reactor[J]. Chemical Engineering Journal, 2019, 369: 1161-1171. doi: 10.1016/j.cej.2019.03.107 [28] Hafezi M, Mozaffarian M, Jafarikojour M, et al. Application of impinging jet atomization in UV/H2O2 reactor operation: design, evaluation, and optimization[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389: 112198. doi: 10.1016/j.jphotochem.2019.112198 [29] Dombrowski N, Fraser R P. A photographic investigation into the disintegration of liquid sheets[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1954, 247(924): 101-130. [30] Galinis G, Strucka J, Barnard J C T, et al. Micrometer-thickness liquid sheet jets flowing in vacuum[J]. Review of Scientific Instruments, 2017, 88: 083117. doi: 10.1063/1.4990130 [31] Ha B, DePonte D P, Santiago J G. Device design and flow scaling for liquid sheet jets[J]. Physical Review Fluids, 2018, 3: 114202. doi: 10.1103/PhysRevFluids.3.114202 [32] Crissman C J, Mo Mianzhen, Chen Zhijiang, et al. Sub-micron thick liquid sheets produced by isotropically etched glass nozzles[J]. Lab on a Chip, 2022, 22(7): 1365-1373. doi: 10.1039/D1LC00757B [33] Belšak G, Bajt S, Šarler B. Computational modeling and simulation of gas focused liquid micro-sheets[J]. International Journal of Multiphase Flow, 2021, 140: 103666. doi: 10.1016/j.ijmultiphaseflow.2021.103666 [34] Tauber M J, Mathies R A, Chen Xiyi, et al. Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy[J]. Review of Scientific Instruments, 2003, 74(11): 4958-4960. doi: 10.1063/1.1614874 [35] Wang Tianwu, Klarskov P, Jepsen P U. Ultrabroadband THz time-domain spectroscopy of a free-flowing water film[J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4): 425-431. doi: 10.1109/TTHZ.2014.2322757 [36] Yin Zhong, Luu T T, Wörner H J. Few-cycle high-harmonic generation in liquids: in-operando thickness measurement of flat microjets[J]. Journal of Physics: Photonics, 2020, 2: 044007. doi: 10.1088/2515-7647/abb0ef [37] George K M, Morrison J T, Feister S, et al. High-repetition-rate (≥kHz) targets and optics from liquid microjets for high-intensity laser-plasma interactions[J]. High Power Laser Science and Engineering, 2019, 7: e50. doi: 10.1017/hpl.2019.35 [38] Snyder J, Morrison J, Feister S, et al. Background pressure effects on MeV protons accelerated via relativistically intense laser-plasma interactions[J]. Scientific Reports, 2020, 10: 18245. doi: 10.1038/s41598-020-75061-1 [39] Borot A, Malvache A, Chen Xiaowei, et al. Attosecond control of collective electron motion in plasmas[J]. Nature Physics, 2012, 8(5): 416-421. doi: 10.1038/nphys2269 [40] Poole P L, Andereck C D, Schumacher D W, et al. Liquid crystal films as on-demand, variable thickness (50−5000 nm) targets for intense lasers[J]. Physics of Plasmas, 2014, 21: 063109. doi: 10.1063/1.4885100 [41] Noaman-ul-Haq M, Ahmed H, Sokollik T, et al. Statistical analysis of laser driven protons using a high-repetition-rate tape drive target system[J]. Physical Review Accelerators and Beams, 2017, 20: 041301. doi: 10.1103/PhysRevAccelBeams.20.041301 [42] Obst L, Göde S, Rehwald M, et al. Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets[J]. Scientific Reports, 2017, 7: 10248. doi: 10.1038/s41598-017-10589-3 [43] Liao Guoqian, Li Yutong, Zhang Yihang, et al. Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions[J]. Physical Review Letters, 2016, 116: 205003. doi: 10.1103/PhysRevLett.116.205003 [44] Jin Qi, Yiwen E, Williams K, et al. Observation of broadband terahertz wave generation from liquid water[J]. Applied Physics Letters, 2017, 111: 071103. doi: 10.1063/1.4990824 [45] E Yiwen, Jin Qi, Tcypkin A, et al. Terahertz wave generation from liquid water films via laser-induced breakdown[J]. Applied Physics Letters, 2018, 113: 181103. doi: 10.1063/1.5054599 [46] Jin Qi, Dai Jianming, E Yiwen, et al. Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields[J]. Applied Physics Letters, 2018, 113: 261101. doi: 10.1063/1.5064644 [47] Tcypkin A N, Ponomareva E A, Putilin S E, et al. Flat liquid jet as a highly efficient source of terahertz radiation[J]. Optics Express, 2019, 27(11): 15485-15494. doi: 10.1364/OE.27.015485 [48] Huang H H, Nagashima T, Hsu W H, et al. Dual THz wave and X-ray generation from a water film under femtosecond laser excitation[J]. Nanomaterials, 2018, 8: 523. doi: 10.3390/nano8070523 [49] Huang H H, Nagashima T, Yonezawa T, et al. Giant enhancement of THz wave emission under double-pulse excitation of thin water flow[J]. Applied Sciences, 2020, 10: 2031. doi: 10.3390/app10062031 [50] Li Min, Li Zhenyu, Nan Junyi, et al. THz generation from water wedge excited by dual-color pulse[J]. Chinese Optics Letters, 2020, 18: 073201. doi: 10.3788/COL202018.073201 [51] Zhao Hang, Tan Yong, Zhang Liangliang, et al. Ultrafast hydrogen bond dynamics of liquid water revealed by terahertz-induced transient birefringence[J]. Light: Science & Applications, 2020, 9: 136. [52] Zhao Hang, Tan Yong, Wu Tong, et al. Strong anisotropy in aqueous salt solutions revealed by terahertz-induced Kerr effect[J]. Optics Communications, 2021, 497: 127192. doi: 10.1016/j.optcom.2021.127192 [53] Zhao Hang, Tan Yong, Zhang Rui, et al. Anion–water hydrogen bond vibration revealed by the terahertz Kerr effect[J]. Optics Letters, 2021, 46(2): 230-233. doi: 10.1364/OL.409849 [54] Ponomareva E A, Tcypkin A N, Smirnov S V, et al. Double-pump technique–one step closer towards efficient liquid-based THz sources[J]. Optics Express, 2019, 27(22): 32855-32862. doi: 10.1364/OE.27.032855 [55] Ponomareva E A, Stumpf S A, Tcypkin A N, et al. Impact of laser-ionized liquid nonlinear characteristics on the efficiency of terahertz wave generation[J]. Optics Letters, 2019, 44(22): 5485-5488. doi: 10.1364/OL.44.005485 [56] Ponomareva E A, Ismagilov A O, Putilin S E, et al. Varying pre-plasma properties to boost terahertz wave generation in liquids[J]. Communications Physics, 2021, 4: 4. doi: 10.1038/s42005-020-00511-1 [57] E Yiwen, Zhang Liangliang, Tsypkin A, et al. Progress, challenges, and opportunities of terahertz emission from liquids[J]. Journal of the Optical Society of America B, 2022, 39(3): A43-A51. doi: 10.1364/JOSAB.446095 [58] 戴晨, 汪洋, 缪志明, 等. 基于飞秒激光与物质相互作用的高次谐波产生及应用[J]. 激光与光电子学进展, 2021, 58:0300001. (Dai Chen, Wang Yang, Miao Zhiming, et al. Generation and application of high-order harmonics based on interaction between femtosecond laser and matter[J]. Laser & Optoelectronics Progress, 2021, 58: 0300001Dai Chen, Wang Yang, Miao Zhiming, et al. Generation and application of high-order harmonics based on interaction between femtosecond laser and matter[J]. Laser & Optoelectronics Progress, 2021, 58: 0300001 [59] Luu T T, Yin Zhong, Jain A, et al. Extreme-ultraviolet high-harmonic generation in liquids[J]. Nature Communications, 2018, 9: 3723. doi: 10.1038/s41467-018-06040-4 [60] Svoboda V, Yin Zhong, Luu T T, et al. Polarization measurements of deep- to extreme-ultraviolet high harmonics generated in liquid flat sheets[J]. Optics Express, 2021, 29(19): 30799-30808. doi: 10.1364/OE.433849 [61] Yang Tianqi, Mizuno T, Kurihara T, et al. High harmonics generation in liquid water using a flat-jet system[C]//Nonlinear Optics 2021. Optical Society of America, 2021: NTh3A. 4. [62] Barnard J C T. X-ray generation from and spectroscopy of a thin liquid sheet[D]. Imperial College London, 2021. [63] Zeng Aiwu, Bian Xuebin. Impact of statistical fluctuations on high harmonic generation in liquids[J]. Physical Review Letters, 2020, 124: 203901. doi: 10.1103/PhysRevLett.124.203901 [64] Xia Changlong, Li Zhengliang, Liu Jiaqi, et al. Role of charge-resonance states in liquid high-order harmonic generation[J]. Physical Review A, 2022, 105: 013115. doi: 10.1103/PhysRevA.105.013115 [65] Ma W J, Kim I J, Yu J Q, et al. Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil[J]. Physical Review Letters, 2019, 122: 014803. doi: 10.1103/PhysRevLett.122.014803 [66] Wang Pengjie, Gong Zheng, Lee S G, et al. Super-heavy ions acceleration driven by ultrashort laser pulses at ultrahigh intensity[J]. Physical Review X, 2021, 11: 021049. [67] Zhu J G, Wu M J, Liao Q, et al. Experimental demonstration of a laser proton accelerator with accurate beam control through image-relaying transport[J]. Physical Review Accelerators and Beams, 2019, 22: 061302. doi: 10.1103/PhysRevAccelBeams.22.061302 [68] Yan Xueqing, Lin Chen, Sheng Zhengming, et al. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime[J]. Physical Review Letters, 2008, 100: 135003. doi: 10.1103/PhysRevLett.100.135003 [69] Gao Ying, Bin Jianhui, Haffa D, et al. An automated, 0.5 Hz nano-foil target positioning system for intense laser plasma experiments[J]. High Power Laser Science and Engineering, 2017, 5: e12. doi: 10.1017/hpl.2017.10 [70] Prencipe I, Fuchs J, Pascarelli S, et al. Targets for high repetition rate laser facilities: needs, challenges and perspectives[J]. High Power Laser Science and Engineering, 2017, 5: e17. doi: 10.1017/hpl.2017.18 [71] Puyuelo-Valdes P, de Luis D, Hernandez J, et al. Implementation of a thin, flat water target capable of high-repetition-rate MeV-range proton acceleration in a high-power laser at the CLPU[J]. Plasma Physics and Controlled Fusion, 2022, 64: 054003. doi: 10.1088/1361-6587/ac5643 [72] Backus S, Kapteyn H C, Murnane M M, et al. Prepulse suppression for high-energy ultrashort pulses using self-induced plasma shuttering from a fluid target[J]. Optics Letters, 1993, 18(2): 134-136. doi: 10.1364/OL.18.000134 [73] Panasenko D, Shu A J, Gonsalves A, et al. Demonstration of a plasma mirror based on a laminar flow water film[J]. Journal of Applied Physics, 2010, 108: 044913. doi: 10.1063/1.3460627 [74] Poole P L, Krygier A, Cochran G E, et al. Experiment and simulation of novel liquid crystal plasma mirrors for high contrast, intense laser pulses[J]. Scientific Reports, 2016, 6: 32041. doi: 10.1038/srep32041 [75] Obst L, Metzkes-Ng J, Bock S, et al. On-shot characterization of single plasma mirror temporal contrast improvement[J]. Plasma Physics and Controlled Fusion, 2018, 60: 054007. doi: 10.1088/1361-6587/aab3bb [76] Hah J, Nees J A, Hammig M D, et al. Characterization of a high repetition-rate laser-driven short-pulsed neutron source[J]. Plasma Physics and Controlled Fusion, 2018, 60: 054011. doi: 10.1088/1361-6587/aab327