Preliminary physics design of the Hefei Advanced Light Facility storage ring
-
摘要: 我国最近立项建设的合肥先进光源将是一台软X射线与真空紫外衍射极限储存环光源,其电子束能量为2.2 GeV,周长为480 m,束流自然发射度为86 pm·rad,共有20个长直线节和20个短直线节。介绍了目前合肥先进光源储存环物理设计的进展情况,包括磁聚焦结构设计与优化,束流注入和集体效应的模拟与计算。Abstract: The Hefei Advanced Light Facility (HALF) is a soft X-ray and VUV diffraction-limited storage ring light source, and the construction of HALF has just been approved by the Chinese government. The electron beam energy of the HALF storage ring is 2.2 GeV; the circumference is 480 m; the natural beam emittance is 86 pm·rad; and there are 20 long and 20 short straight sections in total. This paper will report the physics design progress of the HALF storage ring, including lattice design and optimization, simulation and calculation of beam injection and collective effects.
-
表 1 HALF储存环主要参数
Table 1. Main parameters of the HALF storage ring
parameter value energy 2.2 GeV circumference 479.86 m number of cells 20 natural emittance 86.3 pm·rad transverse tunes (H/V) 48.15/17.15 natural chromaticities (H/V) −77/−57 momentum compaction factor 9.0×10−5 damping partition numbers (H/V/L) 1.39/1.00/1.61 natural damping times (H/V/L) 27.2/37.7/23.4 ms energy loss per turn 186.7 keV natural energy spread 0.62×10−3 total absolute bending angle 442.5° number of straight sections 20 (long) + 20 (short) harmonic number (500 MHz RF cavity) 800 表 2 考虑束内散射效应的束流水平方向发射度和能散
Table 2. Beam horizontal emittance and energy spread with intra-beam scattering
bunch length/mm coupling ratio/% horizontal emittance/(pm·rad) energy spread 2 10 240 9.79×10−4 2 100 103 9.07×10−4 8 10 153 8.74×10−4 8 100 68 8.26×10−4 -
[1] Bei M, Borland M, Cai Y, et al. The potential of an ultimate storage ring for future light sources[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 622(3): 518-535. [2] Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 2014, 21(Pt 5): 843-855. [3] Li Weimin, Wang Lin, Feng Guangyao, et al. The concept of Hefei Advanced Light Source (HALS)[C]//Proceedings of EPAC08. 2008: 2136-2138. [4] Wang Lin, Feng Guangyao, Zhang Shancai, et al. The lattice design of Hefei advanced light source (HALS) storage ring[C]//Proceedings of EPAC08. 2008: 2142-2144. [5] Wang Lin, Li Weimin, Feng Guangyao, et al. The upgrade project of Hefei light source (HLS)[C]//Proceedings of IPAC’10. 2010: 2588-2590. [6] Bai Zhenghe, Yang Penghui, Li Weimin, et al. Design study for the first version of the HALS lattice[C]//Proceedings of IPAC2017. 2017: 2713-2715. [7] Bai Zhenghe, Wang Lin. Study of multi-bend achromat lattices for the HALS diffraction-limited storage ring[C]//60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources. 2018: 25-27. [8] Bai Zhenghe, Yang Penghui, Yang Zihui, et al. Design of the second version of the HALS storage ring lattice[C]//9th International Particle Accelerator Conference. 2018: 4601-4604. [9] Bai Zhenghe, Wang Lin. Super-period multi-bend achromat lattice with interleaved dispersion bumps for the HALS storage ring[C]//9th International Particle Accelerator Conference. 2018: 3597-3599. [10] Bai Zhenghe, Li Wei, Liu Gangwen, et al. Study of seven-bend achromat lattices with interleaved dispersion bumps for HALS[C]//10th International Particle Accelerator Conference. 2019: 1495-1497. [11] Bai Zhenghe, Liu Gangwen, Li Wei, et al. Super-period locally symmetric lattices for designing diffraction-limited storage rings[C]//10th International Particle Accelerator Conference. 2019: 1498-1500. [12] Bai Zhenghe, Liu Gangwen, He Tianlong, et al. A modified hybrid 6BA lattice for the HALF storage ring[C]//12th International Particle Accelerator Conference. 2021: 407-409. [13] Einfeld D, Plesko M, Schaper J. First multi-bend achromat lattice consideration[J]. Journal of Synchrotron Radiation, 2014, 21(Pt 5): 856-861. [14] Farvacque L, Carmignani N, Chavanne J, et al. A low-emittance lattice for the E. S. R. F. [C]//Proceedings of IPAC2013. 2013: 79-81. [15] Borland M, Sun Y, Sajaev V, et al. Lower emittance lattice for the advanced photon source upgrade using reverse bending magnets[C]//Proceedings of NAPAC2016. 2016: 877-880. [16] Riemann B, Streun A. Low emittance lattice design from first principles: reverse bending and longitudinal gradient bends[J]. Physical Review Accelerators and Beams, 2019, 22: 021601. doi: 10.1103/PhysRevAccelBeams.22.021601 [17] Alekou A, Bartolini R, Carmignani N, et al. Study of a double triple bend achromat (DTBA) lattice for a 3 GeV light source[C]//Proceedings of IPAC2016. 2016: 407-409. [18] Xu Jianhao, Yang Penghui, Liu Gangwen, et al. Constraint handling in constrained optimization of a storage ring multi-bend-achromat lattice[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 988: 164890. doi: 10.1016/j.nima.2020.164890 [19] Takaki H, Nakamura N, Kobayashi Y, et al. Beam injection with a pulsed sextupole magnet in an electron storage ring[J]. Physical Review Special Topics-Accelerators and Beams, 2010, 13: 020705. doi: 10.1103/PhysRevSTAB.13.020705 [20] He Tianlong, Bai Zhenghe. Graphics-processing-unit-accelerated simulation for longitudinal beam dynamics of arbitrary bunch trains in electron storage rings[J]. Physical Review Accelerators and Beams, 2021, 24: 104401. doi: 10.1103/PhysRevAccelBeams.24.104401 [21] He Tianlong, Li Weiwei, Bai Zhenghe, et al. Periodic transient beam loading effect with passive harmonic cavities in electron storage rings[J]. Physical Review Accelerators and Beams, 2022, 25: 024401. doi: 10.1103/PhysRevAccelBeams.25.024401