Parameters optimization considering intra-beam scattering in HALF lattice design
-
摘要: 合肥先进光源(HALF)是我国规划建设的软X射线与VUV衍射极限储存环光源(DLSR)。如何有效地实现衍射极限束流发射度,是DLSR物理设计中的核心问题之一。基于束流发射度演化方程,针对HALF预研项目的储存环物理设计方案,计算了束内散射(IBS)效应带来的发射度增长,研究了DLSR中关键参数选择对IBS造成的发射度增长的影响。研究表明,在中低能DLSR物理设计中需要综合考虑储存环的周长、同步辐射阻尼时间等关键参数,以更好地抑制束流发射度的增长。在此研究基础上,通过综合考虑用户需求与储存环物理要求,提出了HALF当前工程项目的储存环物理设计方案。进一步综合应用束团拉伸、全耦合等措施后,更高效地抑制了HALF储存环内IBS造成的束流发射度增长。Abstract: Hefei Advanced Light Facility (HALF) is aimed to be a world-class diffraction limited storage ring (DLSR) in the soft X-ray & VUV regime. The characteristics and law of beam emittance evolution due to intra-beam scattering (IBS) in HALF storage ring was studied based on equations of equilibrium emittance. The results show that, it is necessary to comprehensively optimize the key parameters to obtain excellent beam performance in physical design of middle to low-energy DLSR. Applying the key parameters optimization strategy and taking methods to release the emittance growth due to IBS into consideration, the new version of HALF lattice can meet the needs of soft X-ray diffraction limit.
-
表 1 7BA储存环主要设计参数
Table 1. Main parameters of the 7BA storage ring
parameter value beam energy 2.4 GeV circumference 672 m natural emittance 24.7 pm·rad tune (H, V) 71.30, 23.30 natural chromaticity (H, V) −97, −110 momentum compaction factor 5×10−5 natural energy spread 7.97×10−4 natural damping time (H, V, L) (37.7,58.8,40.8) ms energy loss per turn 182.9 keV RF frequency 500 MHz 表 2 HALF储存环IBS效应影响下平衡发射度
Table 2. Equilibrium emittance of the storage ring under IBS effects
$ \kappa /\mathrm{{\text{%}}} $ $ {\varepsilon }_{0} $/(pm·rad) $ \mathrm{\varepsilon } $/(pm·rad) $ {\sigma }_{\mathrm{p}0}/{10}^{-4} $ $ {\sigma }_{\mathrm{p}}/{10}^{-4} $ $ {\varepsilon }_{{x}0} $/(pm·rad) $ {\varepsilon }_{{x}} $/(pm·rad) $ ({\varepsilon }_{{x}}-{\varepsilon }_{{x}0})/{\varepsilon }_{{x}0} $ 10 24.7 98.4 7.97 11.5 23.2 92.5 2.99 100 24.7 77.7 7.97 10.5 15.0 47.3 2.15 表 3 6BA储存环主要设计参数
Table 3. Main parameters of the 6BA storage ring
parameter value beam energy 2.2 GeV circumference 480 m natural emittance 85.1 pm·rad tune (H, V) 48.175,17.175 natural chromaticity (H, V) −75, −59 momentum compaction factor 6.3×10−5 natural energy spread 6.6×10−4 damping time (H, V, L) (22, 32.4, 21.2) ms energy loss per turn 217.5 keV RF frequency 500 MHz 表 4 HALF储存环在IBS效应影响下平衡发射度
Table 4. Equilibrium emittance of the HALF storage ring under IBS effects
$ \kappa /\mathrm{{\text{%}}} $ $ {\varepsilon }_{0} $/(pm·rad) $ \mathrm{\varepsilon } $/(pm·rad) $ {\sigma }_{\mathrm{p}0}/{10}^{-4} $ $ {\sigma }_{\mathrm{p}}/{10}^{-4} $ $ {\varepsilon }_{x0} $/(pm·rad) $ {\varepsilon }_{x} $/(pm·rad) $ ({\varepsilon }_{x}-{\varepsilon }_{x0})/{\varepsilon }_{x0} $ 10 85.1 185.4 6.6 9.19 79.6 173.4 1.178 100 85.1 153.4 6.6 8.35 50.2 90.5 0.803 表 5 HALF储存环在IBS效应影响下平衡发射度
Table 5. Equilibrium emittance of the HALF storage ring under IBS effects
$ \kappa /\mathrm{{\text{%}}} $ $ {\varepsilon }_{0} $/(pm·rad) $ \mathrm{\varepsilon } $/(pm·rad) $ {\sigma }_{\mathrm{p}0}/{10}^{-4} $ $ {\sigma }_{\mathrm{p}}/{10}^{-4} $ $ {\varepsilon }_{x0} $/(pm·rad) $ {\varepsilon }_{x} $/(pm·rad) $ ({\varepsilon }_{x}-{\varepsilon }_{x0})/{\varepsilon }_{x0} $ 10 84.2 129 6.94 7.98 78.5 120.3 0.53 100 84.2 110.5 6.94 7.56 48.6 63.8 0.31 -
[1] Wang Dong. Overview of light source developments in Asia/Oceania[C]//Proceedings ofIPAC 2019. Melbourne, 2019. [2] Einfeld D. World-wide upgrades overview new DLSR projects[C]//Proceedings of Workshop on Coherence Light Source. Hefei, 2019. [3] Bei M, Borland M, Cai Y, et al. The potential of an ultimate storage ring for future light sources[J]. NuclInstrum Methods Phys Res A, 2010, 622(3): 518-535. doi: 10.1016/j.nima.2010.01.045 [4] Hettel R. DLSR design and plans: an international overview[J]. J Synchrotron Radiat, 2014, 21(5): 843-855. doi: 10.1107/S1600577514011515 [5] Wang Lin. Diffraction limited storage ring: technical challenges and opportunities[R]. Sanpu, Beijing, 2019. [6] Dimper R, Reichert H, Raimondi P, et al. ESRF upgrade programme phase II (2015 - 2022) technical design study[R]. France: ESRF, 2014. [7] FornekT E. Advanced photon source upgrade project final design report[R]. Washington: USDOE Office of Science, 2019. [8] Liu Lin, Milas N, Mukai A H C, et al. The Sirius project[J]. JSynchrotron Radiat, 2014, 21(5): 904-911. doi: 10.1107/S1600577514011928 [9] Jiao Yi, Xu Gang, Cui Xiaohao, et al. The HEPS project[J]. JSynchrotron Radiat, 2018, 25(6): 1611-1618. doi: 10.1107/S1600577518012110 [10] Wang Lin, Bai Zhenghe, Nan Hu, et al. Hefei Advanced Light Source: a future soft X-ray diffraction-limited storage ring at NSRL[C]//Proceedings of the 9th International Particle Accelerator Conference. Vancouver: IPAC, 2018. [11] Borland M, Decker G, Emery L, et al. Lattice design challenges for fourth-generation storage-ring light sources[J]. J Synchrotron Radiat, 2014, 21(5): 912-936. doi: 10.1107/S1600577514015203 [12] 焦毅, 徐刚, 陈森玉, 等. 衍射极限储存环物理设计研究进展[J]. 强激光与粒子束, 2015, 27:045108 doi: 10.11884/HPLPB201527.045108Jiao Yi, Xu Gang, Chen Senyu, et al. Advances in physical design of diffraction-limited storage ring[J]. High Power Laser and Particle Beams, 2015, 27: 045108 doi: 10.11884/HPLPB201527.045108 [13] Vivoli A, Bence A, Brunelle P, et al. Intra-beam scattering effect in the SOLEIL storage ring upgrade[C]//Proceedings of the 10th International Particle Accelerator Conference. Melbourne: IPAC, 2019. [14] Fan Wei, Wang Lin, et a1. Emittance growth estimmion due to intrabeam scattering in Hefei Advanced Light Source (HALS) Storage Ring[C]//Proceedings of IPAC10. 2010. [15] Cai Yunhai, Bane K, Hettel R, et al. Ultimate storage ring based on fourth-order geometric achromats[J]. Phys Rev ST Accel Beams, 2012, 15: 054002. doi: 10.1103/PhysRevSTAB.15.054002 [16] 刘祖平. 同步辐射光源物理引论[M]. 合肥: 中国科学技术大学出版社, 2009: 7Liu Zuping. Introduction of synchrotron radiation light source physics[M]. Hefei: University of Science and Technology of China Press, 2009: 7 [17] Piwinski A. Intra-beam-scattering[C]//Proceedings of the 9th International Conference on High Energy Accelerators. Stanford: SLAC, 1974: 405-409. [18] Bjorken J D, Mtingwa S K. Intrabeam scattering[J]. Part Accel, 1983, 13: 115-143. [19] Bane K L F. A simplified model of intrabeam scattering[C]//Proceedings of EPAC 2002. Paris: EPAC, 2002: 1443-1445. [20] Bai Zhenghe, Li Wei, Liu Gangwen, et al. Study of seven-bend achromat lattices with interleaved dispersion bumps for HALS[C]//Proceedings of the 10th International Particle Accelerator Conference. Melbourne: IPAC, 2019. [21] 合肥先进光源项目建议书[R]. 合肥: 中国科学技术大学国家同步辐射实验室, 2020Hefei Advanced Light Source project proposal[R]. Hefei: University of Science and Technology of China, National Synchrotron Radiation Laboratory, 2020 [22] Bassi G, Tagger J. Longitudinal beam dynamics with a higher-harmonic cavity for bunch lengthening[J]. Int J Mod Phys A, 2019, 34: 1942040. doi: 10.1142/S0217751X19420405 [23] Murphy J. Synchrotron light source data book: version 1.0[R]. Upton: Brookhaven National Laboratory, 1989: 28-37.