Experimental study on super-thermal collective Thomson scattering
-
摘要:
在神光III原型装置上,利用8束三倍频(351.0 nm)激光注入充气黑腔产生大尺度高温等离子体并激发高水平受激布里渊散射(SBS)过程。利用1束四倍频(263.3 nm)探针束和1套广角汤姆逊散射诊断系统,获得了三倍频激光SBS过程驱动的离子声波的超热相干汤姆逊散射(STS)光谱。通过对STS光谱和背向SBS光谱进行联合分析,揭示了SBS的时空演化过程。
Abstract:On Shenguang-III prototype facility, eight
$ 3\omega $ (351.0 nm) laser beams are used to produce laser-scale high-temperature plasmas as well as to excite strong stimulated Brillouin scattering (SBS). An additional
$ 4\omega $ (263.3 nm) laser beam, together with a large-aperture Thomson scattering diagnostic system, is applied to obtain the super-thermal collective Thomson scattering (STS) spectra of the ion acoustic waves driven by the SBS process of a
$ 3\omega $ laser beam. By comparing and analyzing the STS spectra and the backward SBS spectra, the temporal and spatial evolution of SBS is revealed.
-
-
[1] Kruer W L. The physics of laser plasma interactions[M]. Redwood: Addison-Wesley, 1988. [2] Yang Dong, Li Zhichao, Li Sanwei, et al. Laser plasma instability in indirect-drive inertial confinement fusion[J]. Sci Sin-Phys Mech Astron, 2018, 48: 065203. doi: 10.1360/SSPMA2018-00056 [3] Gong Tao, Hao Liang, Li Zhichao, et al. Recent research progress of laser plasma interactions in Shenguang laser facilities[J]. Matter Radiat Extremes, 2019, 4: 055202. doi: 10.1063/1.5092446 [4] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025 [5] Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12: 435. doi: 10.1038/nphys3736 [6] Hall G N, Jones O S, Strozzi D J, et al. The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility[J]. Physics of Plasmas, 2017, 24: 052706. doi: 10.1063/1.4983142 [7] Zha Weiyi, Yang Dong, Xu Tao, et al. Backscatter spectra measurements of the two beams on the same cone on Shenguang-III laser facility[J]. Review of Scientific Instruments, 2018, 89: 013501. doi: 10.1063/1.5005501 [8] Glenzer S H, Divol L M, Berger R L, et al. Thomson scattering measurements of saturated ion waves in laser fusion plasmas[J]. Physical Review Letters, 2001, 86(12): 2565. doi: 10.1103/PhysRevLett.86.2565 [9] Froula D H, Divol L, Glenzer S H, et al. Measurements of nonlinear growth of ion-acoustic waves in two-ion-species plasmas with Thomson scattering[J]. Physical Review Letters, 2002, 88: 105003. doi: 10.1103/PhysRevLett.88.105003 [10] Chen Chaoxin, Gong Tao, Li Zhichao, et al. Implementation of a large-aperture Thomson scattering system for diagnosing driven ion acoustic waves on Shenguang-III prototype laser facility[J]. Journal of Instrumentation, 2022, 17: P05017. doi: 10.1088/1748-0221/17/05/P05017 [11] Froula D H, Divol L, MacKinnon A, et al. Direct observation of stimulated-Brillouin-scattering detuning by a velocity gradient[J]. Physical Review Letters, 2003, 90: 155003. doi: 10.1103/PhysRevLett.90.155003 [12] Froula D H, Divol L, Offenberger A, et al. Direct observation of the saturation of stimulated Brillouin scattering by ion-trapping-induced frequency shifts[J]. Physical Review Letters, 2004, 93: 035001. doi: 10.1103/PhysRevLett.93.035001 [13] Bandulet H C, Labaune C, Lewis K, et al. Thomson-scattering study of the subharmonic decay of ion-acoustic waves driven by the Brillouin instability[J]. Physical Review Letters, 2004, 93: 035002. doi: 10.1103/PhysRevLett.93.035002