Development of constant peak bipolar pulse generator based on Boost closed-loop control
-
摘要: 在肿瘤消融、污水处理等领域的脉冲功率技术应用中,研究发现双极性电脉冲往往比单极性电脉冲效果更佳,这极大地刺激了双极性高压脉冲电源的研发需求。设计了一台基于Boost闭环控制的恒峰值双极性脉冲发生器,该发生器结合boost电路与Marx发生器的特点,实现了具有升压功能的双极性脉冲的产生,且利用峰值检测电路对双极性脉冲发生器的输出峰值进行取样,并反馈到DSP处理器,实现峰值电压闭环控制,从而实现双极性脉冲恒定峰值的输出。为了验证提出的拓扑电路的可行性与稳定性,对5级恒峰值双极性脉冲发生器进行了仿真和实验研究。实验结果表明,当输入电压在100 V时,可产生重复频率5 kHz、脉冲宽度5~10 μs、电压幅值为±2.0 kV的恒峰值双极性脉冲波形。该脉冲电源使用模块化设计,便于级联,结构紧凑,可灵活输出恒峰值的双极性或单极性正(负)脉冲。Abstract: In the application of pulse power technology in tumor ablation, sewage treatment and other fields, it is found that bipolar electric pulse is often better than unipolar electric pulse, which greatly stimulates the research and development demand of bipolar high-voltage pulse power supply. A constant peak bipolar pulse generator is designed based on Boost closed-loop control. The generator perfectly combines the characteristics of Boost circuit and Marx generator to realize the generation of bipolar pulse with boost function. The peak detection circuit is used to sample the peak value of bipolar pulse and feed it back to DSP to realize closed-loop control, so as to realize the output of constant peak bipolar pulse. To verify the feasibility and stability of the proposed topology circuit, simulation and experiment of the developed 5-stage constant peak bipolar pulse generator are carried out. The experimental results show that when the input voltage is 100 V, a constant peak bipolar pulse waveform with repetition frequency of 5 kHz, pulse width of 5−10 μs and voltage amplitude of ±2.0 kV can be generated. The pulse power supply uses modular design, which is easy to cascade, compact, and can flexibly output bipolar or unipolar positive (negative) pulses with constant peak value.
-
Key words:
- high voltage pulse power supply /
- Boost circuit /
- Marx generator /
- bipolar pulse /
- peak detection /
- closed-loop control
-
表 1 仿真参数设置
Table 1. Simulation parameter settings
Uin/V fB//kHz D/% LB/mH L/mH C/μF f/kHz dmax/% RL/kΩ 100 50 66.7 1.2 20 2 5 5 1 -
[1] 陈刚, 储金宇, 陈万金, 等. 高压窄脉冲臭氧发生器电源的研究[J]. 安全与环境工程, 2001(3):25-29 doi: 10.3969/j.issn.1671-1556.2001.03.007Chen Gang, Chu Jinyu, Chen Wanjin, et al. Design of high-voltage pulsed-power to ozonizer[J]. Safety and Environmental Engineering, 2001(3): 25-29 doi: 10.3969/j.issn.1671-1556.2001.03.007 [2] 齐梦圆, 刘卿妍, 石素素, 等. 高压电场技术在食品杀菌中的应用研究进展[J]. 食品科学, 2022, 43(11):284-292Qi Mengyuan, Liu Qingyan, Shi Susu, et al. Recent progress in the application of high-voltage electric field technology in food sterilization[J]. Food Science, 2022, 43(11): 284-292 [3] 孙钢. 不可逆电穿孔技术消融肿瘤研究进展[J]. 介入放射学杂志, 2015, 24(4):277-281 doi: 10.3969/j.issn.1008-794X.2015.04.001Sun Gang. Irreversible electroporation technology for ablation treatment of tumors: recent progress in research[J]. Journal of Interventional Radiology, 2015, 24(4): 277-281 doi: 10.3969/j.issn.1008-794X.2015.04.001 [4] 王越, 任冯刚, 王浩华, 等. 纳米刀治疗肿瘤的基础研究[J]. 临床医学研究与实践, 2017, 2(7):1-2,7 doi: 10.19347/j.cnki.2096-1413.201707001Wang Yue, Ren Fenggang, Wang Haohua, et al. Basic research on tumor treatment with Nanoknife[J]. Clinical Research and Practice, 2017, 2(7): 1-2,7 doi: 10.19347/j.cnki.2096-1413.201707001 [5] 王兴贵, 赵金山. 一种用于污水处理的脉冲电源研究[J]. 电源技术, 2012, 36(3):388-391 doi: 10.3969/j.issn.1002-087X.2012.03.029Wang Xinggui, Zhao Jinshan. Research on pulse power for the sewage treatment[J]. Chinese Journal of Power Sources, 2012, 36(3): 388-391 doi: 10.3969/j.issn.1002-087X.2012.03.029 [6] 董守龙, 王艺麟, 余亮, 等. 一种基于感应隔离的双极性脉冲发生器[J]. 电工技术学报, 2020, 35(24):5050-5056 doi: 10.19595/j.cnki.1000-6753.tces.191292Dong Shoulong, WangYilin, Yu Liang, et al. A bipolar pulse generator based on inductive isolation[J]. Transactions of China Electrotechnical Society, 2020, 35(24): 5050-5056 doi: 10.19595/j.cnki.1000-6753.tces.191292 [7] 李冬黎, 何湘宁. 脉冲电源污水处理技术[J]. 高电压技术, 2001, 27(6):22-23,33 doi: 10.3969/j.issn.1003-6520.2001.06.010Li Dongli, He Xiangning. Study on the wastewater treatment with pulsed power[J]. High Voltage Engineering, 2001, 27(6): 22-23,33 doi: 10.3969/j.issn.1003-6520.2001.06.010 [8] 饶俊峰, 吴施蓉, 朱益成, 等. 双极性固态直线变压器驱动器的研制[J]. 强激光与粒子束, 2021, 33:065006 doi: 10.11884/HPLPB202133.200323Rao Junfeng, Wu Shirong, Zhu Yicheng, et al. Development of bipolar solid-state linear transformer driver[J]. High Power Laser and Particle Beams, 2021, 33: 065006 doi: 10.11884/HPLPB202133.200323 [9] 王晓雨, 董守龙, 马剑豪, 等. 一种新型的双极性Marx高重频脉冲发生器[J]. 电工技术学报, 2020, 35(4):799-806 doi: 10.19595/j.cnki.1000-6753.tces.181821Wang Xiaoyu, Dong Shoulong, Ma Jianhao, et al. A novel high-frequency pulse generator based on bipolar and Marx topologies[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 799-806 doi: 10.19595/j.cnki.1000-6753.tces.181821 [10] 徐春柳, 魏学业. Boost-Marx型高压脉冲电源设计[J]. 电力电子技术, 2020, 54(4):1-3Xu Chunliu, Wei Xueye. Design of Boost-Marx high-voltage pulsed power source[J]. Power Electronics, 2020, 54(4): 1-3 [11] Malviya D, Veerachary M. A boost converter-based high-voltage pulsed-power supply[J]. IEEE Transactions on Industry Applications, 2020, 56(5): 5222-5233. doi: 10.1109/TIA.2020.3007396 [12] Malviya D, Veerachary M. A novel boost converter based high-voltage pulsed-power supply[C]//2019 IEEE International Conference on Sustainable Energy Technologies and Systems (ICSETS). Bhubaneswar: IEEE, 2019: 353-358. [13] 饶俊峰, 杨世龙, 王永刚, 等. 固态Marx发生器的自动控制研究[J]. 强激光与粒子束, 2021, 33:045003 doi: 10.11884/HPLPB202133.200328Rao Junfeng, Yang Shilong, Wang Yonggang, et al. Research on automatic control of solid state Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 045003 doi: 10.11884/HPLPB202133.200328 [14] McNeill N, Holliday D, Mellor P H. Half-bridge power device gate driver circuit with isolation using integrated magnetic component and carrier signal phase switching[C]//Proceedings of the 2011 14th European Conference on Power Electronics and Applications. Birmingham: IEEE, 2011: 1–10. [15] Li Zi, Liu Haotian, Rao Junfeng, et al. Gate driving circuit for the all solid-state rectangular Marx generator[J]. IEEE Transactions on Plasma Science, 2019, 47(8): 4058-4063. doi: 10.1109/TPS.2019.2923327 [16] 赵子睿, 王艳, 刘湘. 基于boost电路的车载充电机系统设计[J]. 电子设计工程, 2017, 25(2):101-104Zhao Zirui, Wang Yan, Liu Xiang. The design of vehicle charging system based on the boost circuit[J]. Electronic Design Engineering, 2017, 25(2): 101-104 [17] Zeng Weirong, Yu Liang, Dong Shoulong, et al. A novel high-frequency bipolar pulsed power generator for biological applications[J]. IEEE Transactions on Power Electronics, 2020, 35(12): 12861-12870. doi: 10.1109/TPEL.2020.2994333