留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Boost闭环控制的恒峰值双极性脉冲发生器的研制

彭媛媛 陈文光 卢杨 刘之戬 欧林祥 左芊

彭媛媛, 陈文光, 卢杨, 等. 基于Boost闭环控制的恒峰值双极性脉冲发生器的研制[J]. 强激光与粒子束, 2022, 34: 115003. doi: 10.11884/HPLPB202234.220179
引用本文: 彭媛媛, 陈文光, 卢杨, 等. 基于Boost闭环控制的恒峰值双极性脉冲发生器的研制[J]. 强激光与粒子束, 2022, 34: 115003. doi: 10.11884/HPLPB202234.220179
Peng Yuanyuan, Chen Wenguang, Lu Yang, et al. Development of constant peak bipolar pulse generator based on Boost closed-loop control[J]. High Power Laser and Particle Beams, 2022, 34: 115003. doi: 10.11884/HPLPB202234.220179
Citation: Peng Yuanyuan, Chen Wenguang, Lu Yang, et al. Development of constant peak bipolar pulse generator based on Boost closed-loop control[J]. High Power Laser and Particle Beams, 2022, 34: 115003. doi: 10.11884/HPLPB202234.220179

基于Boost闭环控制的恒峰值双极性脉冲发生器的研制

doi: 10.11884/HPLPB202234.220179
基金项目: 国家重点研发计划项目(2018YFE0303103)
详细信息
    作者简介:

    彭媛媛,2836735028@qq.com

    通讯作者:

    陈文光,chenwg@usc.edu.cn

  • 中图分类号: TM823

Development of constant peak bipolar pulse generator based on Boost closed-loop control

  • 摘要: 在肿瘤消融、污水处理等领域的脉冲功率技术应用中,研究发现双极性电脉冲往往比单极性电脉冲效果更佳,这极大地刺激了双极性高压脉冲电源的研发需求。设计了一台基于Boost闭环控制的恒峰值双极性脉冲发生器,该发生器结合boost电路与Marx发生器的特点,实现了具有升压功能的双极性脉冲的产生,且利用峰值检测电路对双极性脉冲发生器的输出峰值进行取样,并反馈到DSP处理器,实现峰值电压闭环控制,从而实现双极性脉冲恒定峰值的输出。为了验证提出的拓扑电路的可行性与稳定性,对5级恒峰值双极性脉冲发生器进行了仿真和实验研究。实验结果表明,当输入电压在100 V时,可产生重复频率5 kHz、脉冲宽度5~10 μs、电压幅值为±2.0 kV的恒峰值双极性脉冲波形。该脉冲电源使用模块化设计,便于级联,结构紧凑,可灵活输出恒峰值的双极性或单极性正(负)脉冲。
  • 图  1  Boost闭环控制的恒峰值双极性脉冲发生器的结构框图

    Figure  1.  Structure block diagram of constant peak bipolar pulse generator with boost closed loop control

    图  2  主电路拓扑结构

    Figure  2.  Main circuit topology

    图  3  开关管导通时序

    Figure  3.  Switch on sequence

    图  4  峰值检测电路

    Figure  4.  Peak detection circuit

    图  5  驱动电路原理图

    Figure  5.  Schematic diagram of driving circuit

    图  6  控制信号时序图

    Figure  6.  Control signal sequence

    图  7  升压占空比D=75.0%下负载电压仿真波形

    Figure  7.  Simulation waveform of load voltage under boost duty ratio D=75.0%

    图  8  2.0 kV恒峰值双极性脉冲仿真波形

    Figure  8.  2.0 kV constant peak bipolar pulse simulation waveform

    图  9  实物样机

    Figure  9.  Physical prototype

    图  10  升压占空比D=66.7%时升压型双极性脉冲波形

    Figure  10.  Boost bipolar pulse waveform when boost duty ratio D=66.7%

    图  11  2.0 kV恒峰值双极性脉冲波形

    Figure  11.  2.0 kV constant peak bipolar pulse waveform

    表  1  仿真参数设置

    Table  1.   Simulation parameter settings

    Uin/VfB//kHzD/%LB/mHL/mHC/μFf/kHzdmax/%RL/kΩ
    1005066.71.2202551
    下载: 导出CSV
  • [1] 陈刚, 储金宇, 陈万金, 等. 高压窄脉冲臭氧发生器电源的研究[J]. 安全与环境工程, 2001(3):25-29 doi: 10.3969/j.issn.1671-1556.2001.03.007

    Chen Gang, Chu Jinyu, Chen Wanjin, et al. Design of high-voltage pulsed-power to ozonizer[J]. Safety and Environmental Engineering, 2001(3): 25-29 doi: 10.3969/j.issn.1671-1556.2001.03.007
    [2] 齐梦圆, 刘卿妍, 石素素, 等. 高压电场技术在食品杀菌中的应用研究进展[J]. 食品科学, 2022, 43(11):284-292

    Qi Mengyuan, Liu Qingyan, Shi Susu, et al. Recent progress in the application of high-voltage electric field technology in food sterilization[J]. Food Science, 2022, 43(11): 284-292
    [3] 孙钢. 不可逆电穿孔技术消融肿瘤研究进展[J]. 介入放射学杂志, 2015, 24(4):277-281 doi: 10.3969/j.issn.1008-794X.2015.04.001

    Sun Gang. Irreversible electroporation technology for ablation treatment of tumors: recent progress in research[J]. Journal of Interventional Radiology, 2015, 24(4): 277-281 doi: 10.3969/j.issn.1008-794X.2015.04.001
    [4] 王越, 任冯刚, 王浩华, 等. 纳米刀治疗肿瘤的基础研究[J]. 临床医学研究与实践, 2017, 2(7):1-2,7 doi: 10.19347/j.cnki.2096-1413.201707001

    Wang Yue, Ren Fenggang, Wang Haohua, et al. Basic research on tumor treatment with Nanoknife[J]. Clinical Research and Practice, 2017, 2(7): 1-2,7 doi: 10.19347/j.cnki.2096-1413.201707001
    [5] 王兴贵, 赵金山. 一种用于污水处理的脉冲电源研究[J]. 电源技术, 2012, 36(3):388-391 doi: 10.3969/j.issn.1002-087X.2012.03.029

    Wang Xinggui, Zhao Jinshan. Research on pulse power for the sewage treatment[J]. Chinese Journal of Power Sources, 2012, 36(3): 388-391 doi: 10.3969/j.issn.1002-087X.2012.03.029
    [6] 董守龙, 王艺麟, 余亮, 等. 一种基于感应隔离的双极性脉冲发生器[J]. 电工技术学报, 2020, 35(24):5050-5056 doi: 10.19595/j.cnki.1000-6753.tces.191292

    Dong Shoulong, WangYilin, Yu Liang, et al. A bipolar pulse generator based on inductive isolation[J]. Transactions of China Electrotechnical Society, 2020, 35(24): 5050-5056 doi: 10.19595/j.cnki.1000-6753.tces.191292
    [7] 李冬黎, 何湘宁. 脉冲电源污水处理技术[J]. 高电压技术, 2001, 27(6):22-23,33 doi: 10.3969/j.issn.1003-6520.2001.06.010

    Li Dongli, He Xiangning. Study on the wastewater treatment with pulsed power[J]. High Voltage Engineering, 2001, 27(6): 22-23,33 doi: 10.3969/j.issn.1003-6520.2001.06.010
    [8] 饶俊峰, 吴施蓉, 朱益成, 等. 双极性固态直线变压器驱动器的研制[J]. 强激光与粒子束, 2021, 33:065006 doi: 10.11884/HPLPB202133.200323

    Rao Junfeng, Wu Shirong, Zhu Yicheng, et al. Development of bipolar solid-state linear transformer driver[J]. High Power Laser and Particle Beams, 2021, 33: 065006 doi: 10.11884/HPLPB202133.200323
    [9] 王晓雨, 董守龙, 马剑豪, 等. 一种新型的双极性Marx高重频脉冲发生器[J]. 电工技术学报, 2020, 35(4):799-806 doi: 10.19595/j.cnki.1000-6753.tces.181821

    Wang Xiaoyu, Dong Shoulong, Ma Jianhao, et al. A novel high-frequency pulse generator based on bipolar and Marx topologies[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 799-806 doi: 10.19595/j.cnki.1000-6753.tces.181821
    [10] 徐春柳, 魏学业. Boost-Marx型高压脉冲电源设计[J]. 电力电子技术, 2020, 54(4):1-3

    Xu Chunliu, Wei Xueye. Design of Boost-Marx high-voltage pulsed power source[J]. Power Electronics, 2020, 54(4): 1-3
    [11] Malviya D, Veerachary M. A boost converter-based high-voltage pulsed-power supply[J]. IEEE Transactions on Industry Applications, 2020, 56(5): 5222-5233. doi: 10.1109/TIA.2020.3007396
    [12] Malviya D, Veerachary M. A novel boost converter based high-voltage pulsed-power supply[C]//2019 IEEE International Conference on Sustainable Energy Technologies and Systems (ICSETS). Bhubaneswar: IEEE, 2019: 353-358.
    [13] 饶俊峰, 杨世龙, 王永刚, 等. 固态Marx发生器的自动控制研究[J]. 强激光与粒子束, 2021, 33:045003 doi: 10.11884/HPLPB202133.200328

    Rao Junfeng, Yang Shilong, Wang Yonggang, et al. Research on automatic control of solid state Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 045003 doi: 10.11884/HPLPB202133.200328
    [14] McNeill N, Holliday D, Mellor P H. Half-bridge power device gate driver circuit with isolation using integrated magnetic component and carrier signal phase switching[C]//Proceedings of the 2011 14th European Conference on Power Electronics and Applications. Birmingham: IEEE, 2011: 1–10.
    [15] Li Zi, Liu Haotian, Rao Junfeng, et al. Gate driving circuit for the all solid-state rectangular Marx generator[J]. IEEE Transactions on Plasma Science, 2019, 47(8): 4058-4063. doi: 10.1109/TPS.2019.2923327
    [16] 赵子睿, 王艳, 刘湘. 基于boost电路的车载充电机系统设计[J]. 电子设计工程, 2017, 25(2):101-104

    Zhao Zirui, Wang Yan, Liu Xiang. The design of vehicle charging system based on the boost circuit[J]. Electronic Design Engineering, 2017, 25(2): 101-104
    [17] Zeng Weirong, Yu Liang, Dong Shoulong, et al. A novel high-frequency bipolar pulsed power generator for biological applications[J]. IEEE Transactions on Power Electronics, 2020, 35(12): 12861-12870. doi: 10.1109/TPEL.2020.2994333
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  862
  • HTML全文浏览量:  336
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-31
  • 修回日期:  2022-07-25
  • 网络出版日期:  2022-08-01
  • 刊出日期:  2022-09-20

目录

    /

    返回文章
    返回