Longtime operation of S-band multi-beam relativistic klystron amplifier
-
摘要: 为了实现高功率微波源低磁场及长时间稳定运行,开展了S波段GW级多注相对论速调管放大器(RKA)的理论模拟设计与实验研究。首先,采用一维大信号非线性理论软件优化设计了S波段4腔多注RKA,找到了器件工作的最佳参数:采用电压550 kV、束流4.7 kA的14注RKA,获得功率1.1 GW、效率43%的输出微波。随后,采用粒子模拟软件对理论设计的束波互作用参数进行了验证,获得了输出功率992 MW,器件效率为37%。最后,根据模拟参数开展了器件重频长时间运行实验研究。采用紧凑同轴Marx功率源驱动S波段四腔多注RKA,在电压530 kV、束流5.4 kA、重频20 Hz、运行时间1 s、引导磁场强度0.39 T、注入微波功率1.7 kW的条件下,获得了功率934 MW、脉宽69 ns的输出微波,束波转换效率33%。在器件重频20 Hz、运行时间10 min条件下,坚实了平均功率889 MW、平均脉宽42 ns的输出微波。该研究结果为S波段RKA的低磁场和长时间运行打下了的技术基础。Abstract: To realize a high power microwave source of longtime operation with a low guiding magnetic field, an S-band, GW level multi-beam relativistic klystron amplifier (RKA) has been investigated by means of theoretical modeling, numerical simulation and experiment. Firstly, a four-cavity multi-beam RKA was optimized with a one-dimension large signal code, and optimal working parameters are obtained. Under the conditions of 530 kV voltage, 4.7 kA current, and 14 beams, a 1.1 GW averaged microwave power with efficiency 43% was generated with the code. Subsequently, the beam-wave interaction parameters obtained from the code were verified with a PIC code, and a 992 MW output microwave power with efficiency 37% was obtained. At last, a long time operation experiment was conducted. In such an experiment, a 934 MW averaged microwave power with 69 ns pulse width and 33% efficiency was generated under the conditions of 530 kV voltage, 5.4 kA current, 20 Hz repetition frequency for 1 s, 0.39 T guiding magnetic field and 1.7 kW input microwave power. In addition, for the experiment of 20 Hz repetition frequency and 10 min operating time, a 889 MW averaged microwave power was obtained with 42 ns averaged pulse width. The investigation results make a strong foundation for the S-band RKAs of low guiding magnetic field and longtime operation.
-
表 1 各谐振腔的高频参数
Table 1. High frequency parameters of cavities
cavity gap
width/mm(R/Q)/
ΩM initialization
frequency/GHzinput cavity 14.0 13.2 0.886 2.875 idler cavity 1# 12.0 14.2 0.866 2.885 idler cavity 2# 13.5 15.2 0.865 2.908 output cavity 16.0 18.1 0.841 2.876 表 2 电压变化对电子束调制和器件效率的影响
Table 2. Voltage effects on electron beam modulation and device efficiency
voltage/kV modulation depth efficiency/% electron reversal (v/c) 520 1.10 42.6 −0.05 530 1.10 40.9 −0.08 540 1.10 42.9 0 550 1.09 43.6 0 560 1.07 42.0 −0.07 570 1.04 40.% −0.17 580 0.99 39.8 −0.03 表 3 束流变化对电子束调制和器件效率的影响
Table 3. Current effects on electron beam modulation and device efficiency
current/A modulation depth (I1/Io) efficiency/% electron reversal (v/c) 278×14 0.98 37.0 0.25 298×14 1.04 40.0 −0.03 318×14 1.08 42.0 −0.04 338×14 1.09 43.6 0 358×14 1.09 42.0 −0.13 378×14 1.08 40.9 −0.12 398×14 1.07 43.5 −0.16 表 4 4腔RKA高频系统参数与漂移管参数
Table 4. High frequency parameters and drifting tube parameter of four-cavity RKA
cavity gap width/mm oscillation frequency/GHz axial position/mm input cavity 14 2.88 0 idler cavity 1# 12 2.891 90 idler cavity 2# 13.5 2.936 180 output cavity 16 2.879 485 -
[1] Barker R J, Schamiloglu E. High-power microwave sources and technologies[M]. New York: Wiley-IEEE Press, 2001. [2] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 3rd ed. Boca Raton: CRC Press, 2016. [3] Zhou Chuanming, Liu Guozhi, Liu Yonggui, et al. High-power microwave source[M]. Beijing: Atomic Press, 2007. [4] 黄华, 吴洋, 刘振帮, 等. 锁频锁相的高功率微波器件技术研究[J]. 物理学报, 2018, 67:088402 doi: 10.7498/aps.67.20172684Huang Hua, Wu Yang, Liu Zhenbang, et al. Review on high power microwave device with locked frequency and phase[J]. Acta Physica Sinica, 2018, 67: 088402 doi: 10.7498/aps.67.20172684 [5] Sun Limin, Huang Hua, Li Shifeng, et al. Investigation on high-efficiency beam-wave interaction for coaxial multi-beam relativistic klystron amplifier[J]. Electronics, 2022, 11: 281. doi: 10.3390/electronics11020281 [6] 黄华, 陈昭福, 袁欢, 等. S波段长脉冲相对论速调管重复频率运行稳定性研究[J]. 强激光与粒子束, 2020, 32:103002 doi: 10.11884/HPLPB202032.200167Huang Hua, Chen Zhaofu, Yuan Huan, et al. Research on stability of repetitive operation of S-band, long-pulse relativistic klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103002 doi: 10.11884/HPLPB202032.200167 [7] Huang Hua, Chen Zhaofu, Li Shifeng, et al. Investigation on pulse-shortening of S-band, long pulse, four-cavity, high power relativistic klystron amplifier[J]. Physics of Plasmas, 2019, 26: 033107. doi: 10.1063/1.5086734 [8] Li Shifeng, Huang Hua, Duan Zhaoyun, et al. Demonstration of a Ka-band oversized coaxial multi-beam relativistic klystron amplifier for high power millimeter-wave radiation[J]. IEEE Electron Device Letters, 2022, 43(1): 131-134. doi: 10.1109/LED.2021.3130170 [9] Liu Zhenbang, Song Falun, Jin Hui, et al. Coherent combination of power in space with two X-band gigawatt coaxial multi-beam relativistic klystron amplifiers[J]. IEEE Electron Device Letters, 2022, 43(2): 284-287. doi: 10.1109/LED.2021.3137927 [10] 丁耀根. 大功率速调管的理论与计算模拟[M]. 北京: 国防工业出版社, 2008: 86-110Ding Yaogen. Theory and computer simulation of high power klystron[M]. Beijing: National Defense Industry Press, 2008: 86-110 [11] Huang Hua, Jin Xiao, Lei Lurong, et al. High power and repetitively pulsed operation of a relativistic extended-interaction-cavity oscillator[C]//Proceedings of the 17th International Conference on High Power Particle Beams. Mianyang, China, 2008: 1-3.