Virtual image properties of wide-angle velocity interferometer system for any reflector
-
摘要: 通过分析虚像连续性和位置分辨,指出点集散判据相比相位差判据更适合用于广角任意反射面速度干涉仪(VISAR)靶虚像模型构建。基于点集散判据计算了椭球镜形状参数、像面记录方式、冲击波面倾斜对广角VISAR靶虚像的影响,发现虚像外内径之比总保持在8左右,且
$ {10^{ - 5}}\left( {k - 400} \right) \lt m \lt {10^{ - 5}}k $ (k与m为广角VISAR靶形状参数)时,椭球镜加工误差对像面影响较小;对像面进行平面检测难以得到动态干涉条纹;广角VISAR诊断区域允许波面平均倾斜不超过2°。讨论了广角VISAR靶虚像相干性、异形光纤面板的加工、椭球镜参数的选取、物像重构等问题,对诊断实验提出了参考建议。虚像性质研究为广角VISAR诊断能力提升奠定了基础,对惯性约束聚变内爆对称性诊断具有重要意义。-
关键词:
- 任意反射面速度干涉仪 /
- 广角诊断 /
- 虚像 /
- 点集散判据 /
- 惯性约束聚变
Abstract: By comparing the continuity and resolution of virtual image at “point convergence criterion” and “phase difference criterion”, it is proposed that the former is more suitable for virtual image model of wide-angle velocity interferometer system for any reflector (VISAR). Based on “point convergence criterion”, the effects of ellipsoidal mirror parameters, image recording method and shock wave tilt on the virtual image of the wide-angle VISAR target are analyzed. It is discovered that the ratio of outer and inner diameter of the virtual image is about 8 and the ellipsoidal mirror processing error has little influence on image surface when$ {10^{ - 5}}\left( {k - 400} \right) \lt m \lt {10^{ - 5}}k $ (k and m are the shape parameters of wide-angle VISAR target), it is difficult to obtain dynamic interference fringes in plane detection and wide-angle VISAR diagnosis allows the average inclination angle of shock wave not to exceed 2°. Issues such as virtual image interference of wide-angle VISAR, processing of special-shaped fiber optic panels, selection of ellipsoidal mirror parameters and image reconstruction are discussed, and some suggestions for diagnostic experiments are given. The research on properties of virtual image lays a foundation for the improvement of wide-angle VISAR diagnostic capability, and is of great significance for the symmetry diagnosis in inertial confinement fusion. -
图 2 不同判据下广角VISAR诊断靶虚像
Figure 2. Wide-angle VISAR diagnostic target virtual image at different criterion
(The left side of the sub-figure is the projection of virtual image on xz plane, and the right side is the projection of virtual image on xy plane. The colored area is capsule, the green area is ellipsoid mirror and the red area is virtual image)
图 3 不同判据下的广角VISAR诊断靶虚像分辨
Figure 3. Wide-angle VISAR diagnostic target virtual image resolution at different criterion
(The figure shows the projection of virtual image of wide-angle VISAR diagnostic target on xy plane. The left side of sub-figure is horizontal resolution, and the right side is vertical resolution)
表 1 广角VISAR虚像外内径之比随椭球镜形状参数的变化
Table 1. Variation of the ratio of the outer and inner diameter of wide-angle VISAR virtual image with different ellipsoidal mirror parameters
m ratio of the outer and inner diameter at different ellipsoidal mirror parameters 800 μm 1000 μm 1200 μm 1400 μm 1600 μm 1800 μm 2000 μm 2200 μm 2400 μm 2600 μm 0.006 8.7 8.7 8.7 8.7 8.7 8.8 8.8 8.8 8.8 8.8 0.008 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.6 8.6 0.010 8.3 8.3 8.3 8.3 8.3 8.3 8.4 8.4 8.4 8.4 0.012 8.1 8.1 8.1 8.1 8.2 8.2 8.2 8.2 8.3 8.3 0.014 7.9 7.9 7.9 8.0 8.0 8.0 8.1 8.1 8.1 8.2 0.016 7.7 7.8 7.8 7.8 7.9 7.9 8.0 8.0 8.0 8.1 0.018 7.6 7.6 7.7 7.7 7.8 7.8 7.8 7.9 7.9 8.0 0.020 7.4 7.5 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 0.022 7.3 7.4 7.4 7.5 7.5 7.6 7.7 7.8 7.9 − 0.024 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.8 − − -
[1] Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0 [2] Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12(5): 435-448. doi: 10.1038/nphys3736 [3] Zylstra A B, Hurricane O A, Callahan D A, et al. Burning plasma achieved in inertial fusion[J]. Nature, 2022, 601(7894): 542-548. doi: 10.1038/s41586-021-04281-w [4] Nakai M, Yamanaka M, Azechi H, et al. X-ray and particle diagnostics of a high-density plasma by laser implosion (invited)[J]. Review of Scientific Instruments, 1990, 61(10): 3235-3240. doi: 10.1063/1.1141654 [5] Moody J D, Robey H F, Celliers P M, et al. Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments[J]. Physics of Plasmas, 2014, 21: 092702. doi: 10.1063/1.4893136 [6] Séguin F H, Li C K, DeCiantis J L, et al. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield[J]. Physics of Plasmas, 2016, 23: 032705. doi: 10.1063/1.4943883 [7] Bose A, Betti R, Mangino D, et al. Analysis of trends in experimental observables: reconstruction of the implosion dynamics and implications for fusion yield extrapolation for direct-drive cryogenic targets on OMEGA[J]. Physics of Plasmas, 2018, 25: 062701. doi: 10.1063/1.5026780 [8] Barker L M, Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface[J]. Journal of Applied Physics, 1972, 43(11): 4669-4675. doi: 10.1063/1.1660986 [9] Celliers P M, Collins G W, Da Silva L B, et al. Accurate measurement of laser-driven shock trajectories with velocity interferometry[J]. Applied Physics Letters, 1998, 73(10): 1320-1322. doi: 10.1063/1.121882 [10] Town R P J, Bradley D K, Kritcher A, et al. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility[J]. Physics of Plasmas, 2014, 21: 056313. doi: 10.1063/1.4876609 [11] 薛全喜, 江少恩, 王哲斌, 等. 基于神光Ⅲ原型装置开展的激光直接驱动准等熵压缩研究进展[J]. 物理学报, 2018, 67:045202 doi: 10.7498/aps.67.20172159Xue Quanxi, Jiang Shaoen, Wang Zhebin, et al. Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG III prototype laser facility[J]. Acta Physica Sinica, 2018, 67: 045202 doi: 10.7498/aps.67.20172159 [12] Jiang Shaoen, Wang Feng, Ding Yongkun, et al. Experimental progress of inertial confinement fusion based at the ShenGuang-Ⅲ laser facility in China[J]. Nuclear Fusion, 2019, 59: 032006. doi: 10.1088/1741-4326/aabdb6 [13] 舒桦, 傅思祖, 黄秀光, 等. 神光Ⅱ装置上速度干涉仪的研制及应用[J]. 物理学报, 2012, 61:114102 doi: 10.7498/aps.61.114102Shu Hua, Fu Sizu, Huang Xiuguang, et al. Line-imaging optical recording velocity interferometer at Shenguang-II laser facility and its applications[J]. Acta Physica Sinica, 2012, 61: 114102 doi: 10.7498/aps.61.114102 [14] 刘寿先, 李泽仁, 陈光华, 等. 高时空分辨线成像VISAR在爆轰波物理中的应用[J]. 高压物理学报, 2014, 28(3):307-312 doi: 10.11858/gywlxb.2014.03.007Liu Shouxian, Li Zeren, Chen Guanghua, et al. Demonstration of high resolution line-imaging VISAR application in detonation physics[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 307-312 doi: 10.11858/gywlxb.2014.03.007 [15] 张品亮, 王钊, 李宇, 等. 基于天光一号装置的激光直接驱动准等熵压缩研究[J]. 原子能科学技术, 2018, 52(11):2038-2044 doi: 10.7538/yzk.2018.youxian.0120Zhang Pinliang, Wang Zhao, Li Yu, et al. Study on laser direct driven quasi-isentropic compression loading on HEAVEN-Ⅰ laser facility[J]. Atomic Energy Science and Technology, 2018, 52(11): 2038-2044 doi: 10.7538/yzk.2018.youxian.0120 [16] 吴宇际. 激光聚变中广角冲击波速度诊断方法及相关VISAR技术研究[D]. 合肥: 中国科学技术大学, 2019: 71-81Wu Yuji. Wide-angle shock wave velocity diagnostic method and related VISAR technology in laser fusion[D]. Hefei: University of Science and Technology of China, 2019: 71-81 [17] Wu Yuji, Wang Feng, Li Yulong, et al. Research on a wide-angle diagnostic method for shock wave velocity at SG-Ⅲ prototype facility[J]. Nuclear Fusion, 2018, 58: 076003. doi: 10.1088/1741-4326/aabeed [18] Jacquemot S. Inertial confinement fusion for energy: overview of the ongoing experimental, theoretical and numerical studies[J]. Nuclear Fusion, 2017, 57: 102024. doi: 10.1088/1741-4326/aa6d2d [19] Landen O L, Edwards J, Haan S W, et al. Capsule implosion optimization during the indirect-drive National Ignition Campaign[J]. Physics of Plasmas, 2011, 18: 051002. doi: 10.1063/1.3592170 [20] Atzeni S, Ribeyre X, Schurtz G, et al. Shock ignition of thermonuclear fuel: principles and modelling[J]. Nuclear Fusion, 2014, 54: 054008. doi: 10.1088/0029-5515/54/5/054008 [21] 吴宇际, 王秋平, 王峰, 等. 广角任意反射面速度干涉仪的光学性质研究[J]. 强激光与粒子束, 2019, 31:032001 doi: 10.11884/HPLPB201931.190045Wu Yuji, Wang Qiuping, Wang Feng, et al. Optical properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2019, 31: 032001 doi: 10.11884/HPLPB201931.190045