Full-wave modeling method for high-frequency electromagnetic disturbances coupling to transmission lines
-
摘要: 对于场线耦合问题,经典传输线理论不适用于求解高频电磁干扰辐照下传输线负载上的电压和电流响应。针对这一问题,首先介绍了一种基于天线理论和模拟行为建模(ABM)的时域全波建模方法。该方法利用Harrington矩量法将电流积分方程离散并推导得到宏模型时域表达式,然后利用ABM频域功能实现频变参数的傅里叶逆变换和时域卷积计算。利用电路求解器,该建模方法可直接求解任意结构传输线耦合的负载处瞬态响应;与传统全波算法相比,模型一旦建立便可应用于任意入射场和线性/非线性负载的情况,无需重复耗时地求解电流积分方程。该方法可简化全波算法求解过程,提高仿真计算效率,尤其便于在入射场和负载存在不确定参数时进行高效重复抽样计算以获得统计特性。然后以高频电磁干扰耦合有损大地上的双导体传输线为例,通过与数值电磁代码和传统传输线理论方法的求解结果对比,验证了所提宏模型的有效性以及传输线理论在解决场线耦合问题时的局限性。结果表明,基于全波方法构建的宏模型可在时域内高效准确地求解高频电磁干扰辐照下任意形状传输线负载上的瞬态响应。Abstract: For field-to-line coupling problems, the classical transmission line theory is not applicable to obtain voltage/current responses on transmission lines irradiated by high-frequency electromagnetic disturbances. To solve this problem, a time-domain full-wave modeling method based on antenna theory and analog behavior modeling (ABM) is proposed. The Harrington method of moment is utilized to discretize the current integral equation and derive time-domain expression of the macromodel. Then, the inverse Fourier transform and time-domain convolution of the frequency-dependent parameters in the expression are realized by frequency domain function module (FREQ) of ABM. With embedding into the circuit solver, the model can directly solve the responses of high-frequency electromagnetic disturbances coupling to transmission lines with different structures above lossy ground. Compared with the traditional full-wave algorithms, the model can be applied to any circumstances of incident field and linear/nonlinear loads, and there is no need to solve the current integral equation repeatedly with time-consuming methods. The proposed method can simplify the process of the full-wave algorithm and improve the efficiency of simulation calculation. It is especially convenient to obtain statistical characteristics by performing efficient repeated simulations when the incident field and load are with uncertain parameters. Finally, taking the high frequency electromagnetic field coupling to two-conductor transmission lines above lossy ground as an example, the validity of the proposed macromodel and the limitation of the transmission line theory are verified by comparing the results with those of numerical electromagnetic code and traditional transmission line theory method. The results reveal that the macromodel based on the full-wave method can efficiently and accurately acquire the transient responses on transmission lines with any structure irradiated by high frequency electromagnetic disturbances in the time domain.
-
表 1 计算时间比较
Table 1. Comparison of computation time
method computation time/s NEC 603.08 TL macromodel 9.02 MoM macromodel 8.19 -
[1] 谢彦召, 王赞基, 王群书, 等. 高空核爆电磁脉冲波形标准及特征分析[J]. 强激光与粒子束, 2003, 15(8):781-787Xie Yanzhao, Wang Zanji, Wang Qunshu, et al. High altitude nuclear electromagnetic pulse waveform standards: a review[J]. High Power Laser and Particle Beams, 2003, 15(8): 781-787 [2] Rachidi F. A review of field-to-transmission line coupling models with special emphasis to lightning-induced voltages[J]. IEEE Transactions on Electromagnetic Compatibility, 2012, 54(4): 898-911. doi: 10.1109/TEMC.2011.2181519 [3] 束国刚, 杜子韦华, 黄玮, 等. 核电站最小安全系统电磁脉冲效应试验研究[J]. 强激光与粒子束, 2018, 30:103203 doi: 10.11884/HPLPB201830.180115Shu Guogang, Du Ziweihua, Huang Wei, et al. Experiment research on electromagnetic effects of minimum safety system in nuclear power plant[J]. High Power Laser and Particle Beams, 2018, 30: 103203 doi: 10.11884/HPLPB201830.180115 [4] 汪项伟, 万发雨, 冯超超, 等. 静电放电辐射场模拟及干扰预测[J]. 高电压技术, 2017, 43(10):3396-3402 doi: 10.13336/j.1003-6520.hve.20170925030Wang Xiangwei, Wan Fayu, Feng Chaochao, et al. Radiation field simulation and interference prediction of electrostatic discharge[J]. High Voltage Engineering, 2017, 43(10): 3396-3402 doi: 10.13336/j.1003-6520.hve.20170925030 [5] Xu F, Liu C, Hong W, et al. Fast and accurate transient analysis of buried wires and its applications[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(1): 188-199. doi: 10.1109/TEMC.2013.2272041 [6] 陈宇浩, 谢彦召, 刘民周, 等. 高空电磁脉冲作用下电力系统主要效应模式分析[J]. 强激光与粒子束, 2019, 31:070007 doi: 10.11884/HPLPB201931.190184Chen Yuhao, Xie Yanzhao, Liu Minzhou, et al. Analysis of high-altitude electromagnetic effect models on power system[J]. High Power Laser and Particle Beams, 2019, 31: 070007 doi: 10.11884/HPLPB201931.190184 [7] 祁国成, 李科杰, 李亚峰, 等. 油气管道数据采集与监视控制系统电磁脉冲效应实验[J]. 强激光与粒子束, 2015, 27:123202 doi: 10.11884/HPLPB201527.123202Qi Guocheng, Li Kejie, Li Yafeng, et al. Experimental study on effects of electromagnetic pulse on pipeline supervisory control and data acquisition (SCADA) system[J]. High Power Laser and Particle Beams, 2015, 27: 123202 doi: 10.11884/HPLPB201527.123202 [8] 周星, 王书平, 魏光辉. 电磁脉冲对数字电路的辐照效应研究[J]. 高电压技术, 2006, 32(10):46-49 doi: 10.3969/j.issn.1003-6520.2006.10.014Zhou Xing, Wang Shuping, Wei Guanghui. Study on radiation effects of EMP on digital circuits[J]. High Voltage Engineering, 2006, 32(10): 46-49 doi: 10.3969/j.issn.1003-6520.2006.10.014 [9] 方进勇, 申菊爱, 杨志强, 等. 集成电路器件微波损伤效应实验研究[J]. 强激光与粒子束, 2003, 15(6):591-594Fang Jinyong, Shen Juai, Yang Zhiqiang, et al. Experimental study on microwave vulnerability effect of integrated circuit[J]. High Power Laser and Particle Beams, 2003, 15(6): 591-594 [10] Tesche F M, Ianoz M, Karlsson T. EMC analysis methods and computational models[M]. New York: John Wiley & Sons, 1997. [11] Tesche F M. On the analysis of a transmission line with nonlinear terminations using the time-dependent BLT equation[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 49(2): 427-433. doi: 10.1109/TEMC.2007.897141 [12] Paknahad J, Sheshyekani K, Rachidi F, et al. Lightning electromagnetic fields and their induced currents on buried cables. Part II: the effect of a horizontally stratified ground[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(5): 1146-1154. doi: 10.1109/TEMC.2014.2311926 [13] Grivet-Talocia S, Huang H M, Ruehli A E, et al. Transient analysis of lossy transmission lines: an efficient approach based on the method of characteristics[J]. IEEE Transactions on Advanced Packaging, 2004, 27(1): 45-56. doi: 10.1109/TADVP.2004.825467 [14] Erdin I, Dounavis A, Achar R, et al. A spice model for incident field coupling to lossy multiconductor transmission lines[J]. IEEE Transactions on Electromagnetic Compatibility, 2001, 43(4): 485-494. doi: 10.1109/15.974627 [15] Dounavis A, Achar R, Nakhla M S. Efficient passive circuit models for distributed networks with frequency-dependent parameters[J]. IEEE Transactions on Advanced Packaging, 2000, 23(3): 382-392. doi: 10.1109/6040.861551 [16] Nakhla N M, Dounavis A, Achar R, et al. DEPACT: delay extraction-based passive compact transmission-line macromodeling algorithm[J]. IEEE Transactions on Advanced Packaging, 2005, 28(1): 13-23. doi: 10.1109/TADVP.2004.841677 [17] Xie Yanzhao, Canavero F G, Maestri T, et al. Crosstalk analysis of multiconductor transmission lines based on distributed analytical representation and iterative technique[J]. IEEE Transactions on Electromagnetic Compatibility, 2010, 52(3): 712-727. doi: 10.1109/TEMC.2010.2049112 [18] 张洪才, 何波. 有限元分析——ANSYS 13.0从入门到实战[M]. 北京: 机械工业出版社, 2011Zhang Hongcai, He Bo. Finite element analysis—ANSYS 13.0 from rudiments to applications[M]. Beijing: China Machine Press, 2011 [19] Harrington R F. Field computation by moment methods[M]. New York: Wiley-IEEE Press, 1993. [20] Harrington R F. Matrix methods for field problems[J]. Proceedings of the IEEE, 1967, 55(2): 136-149. doi: 10.1109/PROC.1967.5433 [21] Erdin I, Nakhla M S, Achar R. Circuit analysis of electromagnetic radiation and field coupling effects for networks with embedded full-wave modules[J]. IEEE Transactions on Electromagnetic Compatibility, 2000, 42(4): 449-460. doi: 10.1109/15.902314 [22] Rachidi F, Tkachenko S. Electromagnetic field interaction with transmission lines: from classical theory to HF radiation effects[M]. Southampton: WIT, 2008. [23] Du Ziweihua, Xie Yanzhao, Canavero F G. A spice-compatible macromodel for field coupling to multiconductor transmission lines based on the analog behavioral modeling[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(6): 1884-1890. doi: 10.1109/TEMC.2018.2875536