[1] |
Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273
|
[2] |
Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241. doi: 10.1109/JSTQE.2014.2321279
|
[3] |
来文昌, 马鹏飞, 肖虎, 等. 高功率窄线宽光纤激光技术[J]. 强激光与粒子束, 2020, 32:121001 doi: 10.11884/HPLPB202032.200186Lai Wenchang, Ma Pengfei, Xiao Hu, et al. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 2020, 32: 121001 doi: 10.11884/HPLPB202032.200186
|
[4] |
Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36
|
[5] |
Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811W output power[J]. Optics Letters, 2014, 39(3): 666-669. doi: 10.1364/OL.39.000666
|
[6] |
O'Connor M, Gapontsev V, Fomin V, et al. Power scaling of SM fiber lasers toward 10kW[C]//Conference on Lasers and Electro-Optics/International Quantum Electronics Conference. 2009.
|
[7] |
Fang Qiang, Li Jinhui, Shi Wei, et al. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes[J]. IEEE Photonics Journal, 2017, 9: 1506107.
|
[8] |
Lin Honghuan, Xu Lixin, Li Chengyu, et al. 10.6 kW high-brightness cascade-end-pumped monolithic fiber lasers directly pumped by laser diodes in step-index large mode area double cladding fiber[J]. Results in Physics, 2019, 14: 102479. doi: 10.1016/j.rinp.2019.102479
|
[9] |
Wang Y, Kitahara R, Kiyoyama W, et al. 8-kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad[C]//Proceedings of SPIE 11260, Fiber Lasers XVII: Technology and Systems. 2020: 1126022.
|
[10] |
Du Shanshan, Qi Tiancheng, Li Dan, et al. 10 kW fiber amplifier seeded by random fiber laser with suppression of spectral broadening and SRS[J]. IEEE Photonics Technology Letters, 2022, 34(14): 721-724. doi: 10.1109/LPT.2022.3183025
|
[11] |
Wu Hanshuo, Li Ruixian, Xiao Hu, et al. First demonstration of a bidirectional tandem-pumped high-brightness 8 kW level confined-doped fiber amplifier[J]. Journal of Lightwave Technology, 2022, 40(16): 5673-5681. doi: 10.1109/JLT.2022.3183381
|
[12] |
Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
|
[13] |
Liu Wei, Ma Pengfei, Lv Haibin, et al. General analysis of SRS-limited high-power fiber lasers and design strategy[J]. Optics Express, 2016, 24(23): 26715-26721. doi: 10.1364/OE.24.026715
|
[14] |
Stihler C, Jauregui C, Kholaif S E, et al. Intensity noise as a driver for transverse mode instability in fiber amplifiers[J]. PhotoniX, 2020, 1(1): 8. doi: 10.1186/s43074-020-00008-8
|
[15] |
Huang Zhimeng, Shu Qiang, Tao Rumao, et al. >5kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 2021, 33(21): 1181-1184. doi: 10.1109/LPT.2021.3112270
|
[16] |
Ren Shuai, Lai Wenchang, Wang Guangjian, et al. Experimental study on the impact of signal bandwidth on the transverse mode instability threshold of fiber amplifiers[J]. Optics Express, 2022, 30(5): 7845-7853. doi: 10.1364/OE.454189
|
[17] |
Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567-577. doi: 10.1109/JSTQE.2005.850241
|
[18] |
Xue Yuhao, He Bin, Zhou Jun, et al. High power passive phase locking of four Yb-doped fiber amplifiers by an all-optical feedback loop[J]. Chinese Physics Letters, 2011, 28: 054212. doi: 10.1088/0256-307X/28/5/054212
|
[19] |
Brignon A. Coherent laser beam combining[M]. Weinheim: Wiley-VCH, 2013.
|
[20] |
周军, 何兵, 薛宇豪, 等. 高功率光纤激光阵列被动相干组束技术研究[J]. 光学学报, 2011, 31:0900129 doi: 10.3788/AOS201131.0900129Zhou Jun, He Bing, Xue Yuhao, et al. Study on passive coherent beam combination technology of high power fiber laser arrays[J]. Acta Optica Sinica, 2011, 31: 0900129 doi: 10.3788/AOS201131.0900129
|
[21] |
Liu Zejin, Jin Xiaoxi, Su Rongtao, et al. Development status of high power fiber lasers and their coherent beam combination[J]. SCIENCE CHINA Information Sciences, 2019, 62: 41301. doi: 10.1007/s11432-018-9742-0
|
[22] |
Niu Xiaxia, Liu Meizhong, Zhang Haibo, et al. Coherent beam combining of a nine-fiber laser array using an all-optical ring cavity feedback loop based on diffractive optical element[J]. Optical Engineering, 2020, 59: 116108.
|
[23] |
周朴, 粟荣涛, 马阎星, 等. 激光相干合成的研究进展: 2011-2020[J]. 中国激光, 2021, 48:0401003 doi: 10.3788/CJL202148.0401003Zhou Pu, Su Rongtao, Ma Yanxing, et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 2021, 48: 0401003 doi: 10.3788/CJL202148.0401003
|
[24] |
Bourderionnet J, Bellanger C, Primot J, et al. Collective coherent phase combining of 64 fibers[J]. Optics Express, 2011, 19(18): 17053-17058. doi: 10.1364/OE.19.017053
|
[25] |
粟荣涛, 周朴, 王小林, 等. 32路光纤激光相干阵列的相位锁定[J]. 强激光与粒子束, 2014, 26:110101 doi: 10.11884/HPLPB201426.110101Su Rongtao, Zhou Pu, Wang Xiaolin, et al. Phase locking of a coherent array of 32 fiber lasers[J]. High Power Laser and Particle Beams, 2014, 26: 110101 doi: 10.11884/HPLPB201426.110101
|
[26] |
Ahn H K, Kong H J. Cascaded multi-dithering theory for coherent beam combining of multiplexed beam elements[J]. Optics Express, 2015, 23(9): 12407-12413. doi: 10.1364/OE.23.012407
|
[27] |
Huang Zhimeng, Tang Xuan, Luo Yongquan, et al. Active phase locking of thirty fiber channels using multilevel phase dithering method[J]. Review of Scientific Instruments, 2016, 87: 033109. doi: 10.1063/1.4943666
|
[28] |
Kabeya D, Kermène V, Fabert M, et al. Efficient phase-locking of 37 fiber amplifiers by phase-intensity mapping in an optimization loop[J]. Optics Express, 2017, 25(12): 13816-13821. doi: 10.1364/OE.25.013816
|
[29] |
Chang Hongxiang, Xi Jiachao, Su Rongtao, et al. Efficient phase-locking of 60 fiber lasers by stochastic parallel gradient descent algorithm[J]. Chinese Optics Letters, 2020, 18: 101403. doi: 10.3788/COL202018.101403
|
[30] |
Fsaifes I, Daniault L, Bellanger S, et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 2020, 28(14): 20152-20161. doi: 10.1364/OE.394031
|
[31] |
Chang Hongxiang, Chang Qi, Xi Jiachao, et al. First experimental demonstration of coherent beam combining of more than 100 beams[J]. Photonics Research, 2020, 8(12): 1943-1948. doi: 10.1364/PRJ.409788
|
[32] |
Shpakovych M, Maulion G, Kermene V, et al. Experimental phase control of a 100 laser beam array with quasi-reinforcement learning of a neural network in an error reduction loop[J]. Optics Express, 2021, 29(8): 12307-12318. doi: 10.1364/OE.419232
|
[33] |
常琦, 侯天悦, 邓宇, 等. 基于二维光场计算的400束规模激光相干合成[J]. 红外与激光工程, 2022, 51:20220276 doi: 10.3788/IRLA20220276Chang Qi, Hou Tianyue, Deng Yu, et al. Coherent combined of 400 scale lasers based on two-dimensional light field calculation[J]. Infrared and Laser Engineering, 2022, 51: 20220276 doi: 10.3788/IRLA20220276
|
[34] |
Ma Yanxing, Wang Xiaolin, Leng Jingyong, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics Letters, 2011, 36(6): 951-953. doi: 10.1364/OL.36.000951
|
[35] |
Flores A, Shay T M, Lu C A, et al. Coherent beam combining of fiber amplifiers in a kW regime[C]//CLEO: 2011—Laser Applications to Photonic Applications. 2011.
|
[36] |
Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 2011, 36(14): 2686-2688. doi: 10.1364/OL.36.002686
|
[37] |
McNaught S J, Thielen P A, Adams L N, et al. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 0901008.
|
[38] |
Flores A, Dajani I, Holten R H, et al. Multi-kilowatt diffractive coherent combining of pseudorandom-modulated fiber amplifiers[J]. Optical Engineering, 2016, 55: 096101. doi: 10.1117/1.OE.55.9.096101
|
[39] |
刘泽金, 周朴, 马鹏飞, 等. 4路高功率窄线宽、线偏振光纤放大器相干偏振合成实现5kW级高亮度激光输出[J]. 中国激光, 2017, 44:0415004 doi: 10.3788/CJL201744.0415004Liu Zejin, Zhou Pu, Ma Pengfei, et al. 4 channels of high-power narrow linewidth linear polarization fiber amplifiers coherent polarization combining to achieve 5kW high-brightness laser output[J]. Chinese Journal of Lasers, 2017, 44: 0415004 doi: 10.3788/CJL201744.0415004
|
[40] |
Ma Pengfei, Chang Hongaxing, Ma Yanxing, et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array[J]. Optics & Laser Technology, 2021, 140: 107016.
|
[41] |
Shekel E, Vidne Y, Urbach B. 16kW single mode CW laser with dynamic beam for material processing[C]//Proceedings of SPIE 11260, Fiber Lasers XVII: Technology and Systems. 2020: 1126021.
|
[42] |
Müller M, Aleshire C, Klenke A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843
|
[43] |
吴坚, 马阎星, 马鹏飞, 等. 光纤激光相干合成20 kW级高功率输出[J]. 红外与激光工程, 2021, 50:20210621 doi: 10.3788/IRLA20210621Wu Jian, Ma Yanxing, Ma Pengfei, et al. Coherently combined fiber laser with 20 kW high power output[J]. Infrared and Laser Engineering, 2021, 50: 20210621 doi: 10.3788/IRLA20210621
|
[44] |
Goodno G D, Asman C P, Anderegg J, et al. Brightness-scaling potential of actively phase-locked solid-state laser arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 460-472. doi: 10.1109/JSTQE.2007.896618
|
[45] |
Seise E, Klenke A, Limpert J, et al. Coherent addition of fiber-amplified ultrashort laser pulses[J]. Optics Express, 2010, 18(26): 27827-27835. doi: 10.1364/OE.18.027827
|
[46] |
Antier M, Bourderionnet J, Larat C, et al. kHz closed loop interferometric technique for coherent fiber beam combining[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 090150.
|
[47] |
Weyrauch T, Vorontsov M, Mangano J, et al. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km[J]. Optics Letters, 2016, 41(4): 840-843. doi: 10.1364/OL.41.000840
|
[48] |
Geng Chao, Luo Wen, Tan Yi, et al. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control[J]. Optics Express, 2013, 21(21): 25045-25055. doi: 10.1364/OE.21.025045
|
[49] |
Flores A, Ehrehreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[C]//Proceedings of SPIE 9728, Fiber Lasers XIII: Technology, Systems, and Applications. 2016: 97281Y.
|
[50] |
Beresnev L A, Motes R A, Townes K J, et al. Design of a noncooled fiber collimator for compact, high-efficiency fiber laser arrays[J]. Applied Optics, 2017, 56(3): B169-B178. doi: 10.1364/AO.56.00B169
|
[51] |
Boju A, Maulion G, Saucourt J, et al. Small footprint phase locking system for a large tiled aperture laser array[J]. Optics Express, 2021, 29(8): 11445-11452. doi: 10.1364/OE.420251
|
[52] |
Long Jinhu, Chang Hongxiang, Zhang Yuqiu, et al. Compact internal sensing phase locking system for coherent combining of fiber laser array[J]. Optics & Laser Technology, 2022, 148: 107775.
|
[53] |
周朴. 光纤激光相干合成技术研究[D]. 长沙: 国防科学技术大学, 2010Zhou Pu. Study on the coherent beam combining of fiber laser[D]. Changsha: National University of Defense Technology, 2010
|
[54] |
Su Rongtao, Zhang Zhixing, Zhou Pu, et al. Coherent beam combining of a fiber lasers array based on cascaded phase control[J]. IEEE Photonics Technology Letters, 2016, 28(22): 2585-2588. doi: 10.1109/LPT.2016.2605765
|
[55] |
粟荣涛, 龙金虎, 马阎星, 等. 激光相干阵列和控制方法: 202110650427.6[P]. 2021-06-10Su Rongtao, Long Jinhu, Ma Yanxing, et al. The coherently beams laser array and its control method: 202110650427.6[P]. 2021-06-10
|
[56] |
Bowman D J, King M J, Sutton A J, et al. Internally sensed optical phased array[J]. Optics Letters, 2013, 38(7): 1137-1139. doi: 10.1364/OL.38.001137
|
[57] |
Roberts L E, Ward R L, Sutton A J, et al. Coherent beam combining using a 2D internally sensed optical phased array[J]. Applied Optics, 2014, 53(22): 4881-4885. doi: 10.1364/AO.53.004881
|
[58] |
Roberts L E, Ward R L, Smith C, et al. Coherent beam combining using an internally sensed optical phased array of frequency-offset phase locked lasers[J]. Photonics, 2020, 7: 118. doi: 10.3390/photonics7040118
|
[59] |
Yang Yan, Geng Chao, Li Feng, et al. Multi-aperture all-fiber active coherent beam combining for free-space optical communication receivers[J]. Optics Express, 2017, 25(22): 27519-27532. doi: 10.1364/OE.25.027519
|
[60] |
李枫, 耿超, 李新阳, 等. 基于光纤耦合器的全光纤链路锁相控制[J]. 光电工程, 2017, 44(6):602-609Li Feng, Geng Chao, Li Xinyang, et al. Phase-locking control in all fiber link based on fiber coupler[J]. Opto-Electronic Engineering, 2017, 44(6): 602-609
|
[61] |
Long Jinhu, Jin Kaikai, Hou Tianyue, et al. Wavefront aberration mitigation with adaptive distributed aperture fiber array lasers[C]//Proceedings of SPIE 11890, Advanced Lasers, High-Power Lasers, and Applications XII. 2021: 1189008.
|
[62] |
粟荣涛, 龙金虎, 马阎星, 等. 一种活塞相位控制系统及方法: 110729628B[P]. 2021-05-25.Su Rongtao, Long Jinhu, Ma Yanxing, et al. The system and method of piston phase control: 110729628B[P]. 2021-05-25.
|
[63] |
Primmerman C A, Price T R, Humphreys R A, et al. Atmospheric-compensation experiments in strong-scintillation conditions[J]. Applied Optics, 1995, 34(12): 2081-2088. doi: 10.1364/AO.34.002081
|
[64] |
Lukin V P. Limitations of adaptive control efficiency due to singular points in the wavefront of a laser beam[J]. Applied Optics, 2012, 51(10): C176-C183. doi: 10.1364/AO.51.00C176
|
[65] |
耿超, 李新阳, 张小军, 等. 基于目标在回路的三路光纤传输激光相干合成实验[J]. 物理学报, Acta Physica Sinica, 2012, 61:034204 doi: 10.7498/aps.61.034204Geng Chao, Li Xinyang, Zhang Xiaojun, et al. Experimental investigation on coherent beam combination of a three-element fiber array based on target-in-the-loop technique[J]. Acta Physica Sinica, 2012, 61: 034204 doi: 10.7498/aps.61.034204
|
[66] |
Weyrauch T, Vorontsov M A, Carhart G W, et al. Experimental demonstration of coherent beam combining over a 7 km propagation path[J]. Optics Letters, 2011, 36(22): 4455-4457. doi: 10.1364/OL.36.004455
|
[67] |
Geng Chao, Li Feng, Zuo Jing, et al. Fiber laser transceiving and wavefront aberration mitigation with adaptive distributed aperture array for free-space optical communications[J]. Optics Letters, 2020, 45(7): 1906-1909. doi: 10.1364/OL.383093
|
[68] |
Vorontsov M A, Weyrauch T. Laser beam engineering and atmospheric turbulence effects mitigation with coherent fiber array systems[C]//Propagation Through and Characterization of Atmospheric and Oceanic Phenomena. 2016.
|
[69] |
支冬, 马阎星, 马鹏飞, 等. 公里级湍流大气环境下光纤激光高效相干合成[J]. 红外与激光工程, 2019, 48:1005007 doi: 10.3788/IRLA201948.1005007Zhi Dong, Ma Yanxing, Ma Pengfei, et al. Efficient coherent beam combining of fiber laser array through km-scale turbulent atmosphere[J]. Infrared and Laser Engineering, 2019, 48: 1005007 doi: 10.3788/IRLA201948.1005007
|
[70] |
Zuo Jing, Zou Fan, Zhou Xin, et al. Coherent combining of a large-scale fiber laser array over 2.1 km in turbulence based on a beam conformal projection system[J]. Optics Letters, 2022, 47(2): 365-368. doi: 10.1364/OL.446722
|
[71] |
Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185
|
[72] |
Dennis M R, O’Holleran K, Padgett M J. Singular optics: optical vortices and polarization singularities[J]. Progress in Optics, 2009, 53: 293-363.
|
[73] |
Shen Yijie, Wang Xiejiao, Xie Zhenwei, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 2019, 8: 90.
|
[74] |
Wang Jian, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496. doi: 10.1038/nphoton.2012.138
|
[75] |
Padgett M, Bowman R. Tweezers with a twist[J]. Nature Photonics, 2011, 5(6): 343-348. doi: 10.1038/nphoton.2011.81
|
[76] |
Lachinova S L, Vorontsov M A. Exotic laser beam engineering with coherent fiber-array systems[J]. Journal of Optics, 2013, 15: 105501. doi: 10.1088/2040-8978/15/10/105501
|
[77] |
Chu Xiuxiang, Sun Quan, Wang Jing, et al. Generating a Bessel-Gaussian beam for the application in optical engineering[J]. Scientific Reports, 2016, 5: 18665. doi: 10.1038/srep18665
|
[78] |
Xie Guodong, Liu Cong, Li Long, et al. Spatial light structuring using a combination of multiple orthogonal orbital angular momentum beams with complex coefficients[J]. Optics Letters, 2017, 42(5): 991-994. doi: 10.1364/OL.42.000991
|
[79] |
Aksenov V P, Dudorov V V, Filimonov G A, et al. Vortex beams with zero orbital angular momentum and non-zero topological charge[J]. Optics & Laser Technology, 2018, 104: 159-163.
|
[80] |
Zhi Dong, Hou Tianyue, Ma Pengfei, et al. Comprehensive investigation on producing high-power orbital angular momentum beams by coherent combining technology[J]. High Power Laser Science and Engineering, 2019, 7: e33. doi: 10.1017/hpl.2019.17
|
[81] |
Yu Tao, Xia Hui, Xie Wenke, et al. Orbital angular momentum mode detection of the combined vortex beam generated by coherent combining technology[J]. Optics Express, 2020, 28(24): 35795-35806. doi: 10.1364/OE.409122
|
[82] |
Hou Tianyue, Chang Qi, Yu Tao, et al. Switching the orbital angular momentum state of light with mode sorting assisted coherent laser array system[J]. Optics Express, 2021, 29(9): 13428-13440. doi: 10.1364/OE.422635
|
[83] |
Veinhard M, Bellanger S, Daniault L, et al. Orbital angular momentum beams generation from 61 channels coherent beam combining femtosecond digital laser[J]. Optics Letters, 2021, 46(1): 25-28. doi: 10.1364/OL.405975
|
[84] |
Adamov E V, Aksenov V P, Dudorov V V, et al. Controlling the spatial structure of vector beams synthesized by a fiber laser array[J]. Optics & Laser Technology, 2022, 154: 108351.
|
[85] |
Long Jinhu, Hou Tianyue, Chang Qi, et al. Generation of optical vortex lattices by a coherent beam combining system[J]. Optics Letters, 2021, 46(15): 3665-3668. doi: 10.1364/OL.425186
|
[86] |
Basistiy I V, Bazhenov V Y, Soskin M S, et al. Optics of light beams with screw dislocations[J]. Optics Communications, 1993, 103(5/6): 422-428.
|
[87] |
Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161-204. doi: 10.1364/AOP.3.000161
|
[88] |
Hou Tianyue, An Yi, Chang Qi, et al. Deep-learning-based phase control method for tiled aperture coherent beam combining systems[J]. High Power Laser Science and Engineering, 2019, 7: e59. doi: 10.1017/hpl.2019.46
|
[89] |
Liu Renqi, Peng Chun, Liang Xiaoyan, et al. Coherent beam combination far-field measuring method based on amplitude modulation and deep learning[J]. Chinese Optics Letters, 2020, 18: 041402. doi: 10.3788/COL202018.041402
|
[90] |
Wang Dan, Du Qiang, Zhou Tong, et al. Stabilization of the 81-channel coherent beam combination using machine learning[J]. Optics Express, 2021, 29(4): 5694-5709. doi: 10.1364/OE.414985
|
[91] |
Mirigaldi A, Carbone M, Perrone G. Non-uniform adaptive angular spectrum method and its application to neural network assisted coherent beam combining[J]. Optics Express, 2021, 29(9): 13269-13287. doi: 10.1364/OE.423057
|