Design and experiment of 1∶16 power divider model based on coaxial waveguide
-
摘要: 针对高功率固态源多路功率分配技术的需要,设计并研究了一种基于同轴波导的多路功率分配器件。通过分析同轴波导传输特性与阻抗匹配理论,利用电磁仿真软件设计了一种S波段1分16功分器模型,并加工出实物进行实验测试。实验结果表明:该功分器在2.28~2.86 GHz,相对带宽约23%频率范围内,输入端反射系数S11≤−15 dB;在2.37~2.57 GHz,相对带宽约8.1%频率范围内,输入端反射系数S11≤−20 dB;输出幅度不平衡度±0.1 dB,相位不平衡度±5°。该功分器满足输出幅度与相位一致性要求,可应用于S波段百瓦级连续波功率分配。Abstract: To meet the needs of multi-way power distribution applied to high-power solid-state sources, a multi-way power distribution device based on coaxial waveguide is designed and studied. By analyzing the transmission characteristics of coaxial waveguides and by applying the theory of impedance matching, an S-band 1∶16 power divider is designed by electromagnetic simulation software. Moreover, the device is machined for testing. Experimental results show that the reflection coefficient S11 of the power divider is less than −15 dB in the range of 2.28 GHz to 2.86 GHz (the relative bandwidth is 23%). In the range of 2.37 GHz to 2.57 GHz (the relative bandwidth is 8.1%), the reflection coefficient S11 of the input port is less than −20 dB, with the amplitude imbalance ±0.1 dB and phase imbalance ±5° at the output ports. To sum up, the power divider meets the amplitude and phase consistency requirements at output ports and can be applied to S-band hundred-watt continuous wave power distribution.
-
Key words:
- power divider /
- power combiner /
- continuous wave /
- high power microwave /
- coaxial waveguide
-
表 1 各输出端口的传输系数和相位(2.45 GHz)
Table 1. Transmission coefficients and phase at output port (2.45 GHz)
port number n transmission coefficients Sn,1/dB phase/(°) port number n transmission coefficients Sn,1/dB phase/(°) 2 −12.07 179.9 10 −12.03 178.6 3 −12.14 −179.9 11 −12.00 176.1 4 −12.00 178.7 12 −12.30 −179.9 5 −12.01 −177.4 13 −12.03 175.7 6 −12.00 −177.5 14 −12.11 178.1 7 −12.08 −176.7 15 −12.10 180.0 8 −12.03 −178.6 16 −12.06 −175.9 9 −12.04 −179.5 17 −12.07 178.8 表 2 功分器连续波条件下输入功率与反射功率的关系(2.45 GHz)
Table 2. Measured input power and reflected power of power divider (2.45 GHz, CW)
input power/W reflected power/W input power/W reflected power/W 66 1.1 201 3.6 77 1.3 238 4.3 92 1.5 277 5.1 107 1.8 325 5.9 127 2.2 354 6.7 147 2.5 385 7.5 175 3.0 -
[1] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 2nd ed. New York: Taylor & Francis, 2007. [2] Benford J. Space applications of high-power microwaves[J]. IEEE Transactions on Plasma Science, 2008, 36(3): 569-581. doi: 10.1109/TPS.2008.923760 [3] Haddad G I, Trew R J. Microwave solid-state active devices[J]. IEEE Transactions on Microwave Theory & Techniques, 2002, 50(3): 760-779. [4] 宋开军. 基于波导的微波毫米波空间功率合成技术研究[D]. 成都: 电子科技大学, 2007: 1-105Song Kaijun. The researches on microwave and millimeter-wave spatial power-combining technology based on waveguide[D]. Chengdu: University of Electronic Science and Technology of China, 2007: 1-105 [5] Wilkinson E J. An N-way hybrid power divider[J] IRE Trans. Microwave Theory Tech, 1960, 8(1): 116-118 [6] Nantista C, Tantawi S. A compact, planar, eight-port waveguide power divider/combiner: the cross potent superhybrid[J]. IEEE Microwave and Guided Wave Letters, 2000, 10(12): 520-522. doi: 10.1109/75.895089 [7] Gysel U H. A new n-way power divider/combiner suitable for high-power applications[C]//IEEE-MTT-S International Microwave Symposium. 1975 [8] Guo L T, Chang C, Huang W H, et al. Compact high-power microwave divider and combiner.[J]. Review of Scientific Instruments., 2016(No.2): 24701-24702. [9] Shuguang Chen. A radial waveguide power divider for Ka band phased array antennas[A]. 2002 3rd International Conference on Microwave and Millimeter Wave Technology. (Proceedings ICMMT 2002). [10] Xu L, Yuan C, Zhang Q, et al. A double-layer wideband radial-line waveguide power divider/combiner for high-power microwave application[J]. Review of Scientific Instruments., 2021, 92(8): 84709. doi: 10.1063/5.0056044 [11] 李相强, 刘庆想, 张健穹, 等. S波段多路径向线功率分配器的设计与实验[J]. 强激光与粒子束, 2010, 22(07):1591-1594 doi: 10.3788/HPLPB20102207.1591Li Xiangqiang, Liu Qingxiang, Zhang Jianqiong, et al. Design and experiment of S-band radial-line waveguide power divider[J]. High Power Laser and Particle Beams, 2010, 22(07): 1591-1594 doi: 10.3788/HPLPB20102207.1591 [12] (美)波扎著. 微波工程[M]. 第3版. 张肇仪, 译. 北京: 电子工业出版社, 2015David M Pozar. Microwave Engineering[M]. 3rd ed.Trans. by Zhaoyi Zhang. Beijing: Publishing House of Electronics Industry, 2015 [13] 朱建清, 刘荣, 荣舜连, 等. 电磁波原理与微波工程基础[M]. 北京: 电子工业出版社, 2011Zhu Jianqing, Liu Rong, Rong Shunlian, et al. Principle of electromagnetic wave and foundation of microwave engineering[M]. Beijing: Publishing House of Electronics Industry, 2011 [14] 顾茂章, 张克潜. 微波技术[M]. 北京: 清华大学出版社, 1989Gu Maozhang, Zhang Keqian, et al. Microwave technique[M]. Beijing: Tsinghua University Press, 1989 [15] 刘琨, 詹铭周, 张勇. 一种用于3 mm振荡器的低通阻抗变换器[C]//2009年全国微波毫米波会议论文集(上册). 北京: 电子工业出版社, 2009: 247-249Liu Kun, Zhan Mingzhou, Zhang Yong. A low on-impedance converter for 3mm oscillators[C]//2009 National Conference on Microwave and Millimeter Waves (Volume 1). Beijing: Publishing House of Electronics Industry, 2009: 247-249