A compact filtering patch antenna with independent controllable radiation nulls
-
摘要: 提出了一种辐射零点可控的紧凑型滤波贴片天线。该滤波天线以基本的微带贴片天线为原型,主要由一个简单的金属辐射贴片和两个对称的分割形槽组成。两个分割形槽蚀刻在金属贴片上,使得高/低频段分别产生两个宽边辐射零点,从而引入滤波选频功能。该结构未引入额外滤波电路和其他寄生单元,节省了空间尺寸,结构更加紧凑;两个辐射零点独立可控,提高了设计的灵活度。且在实现滤波选频功能的同时,对天线增益的影响很小。利用HFSS仿真软件优化滤波天线结构,制作了一个实物模型并进行了测试。测试结果与仿真结果基本一致。测试结果表明,提出的滤波天线工作在2.40 GHz,两个独立可控的辐射零点分别位于1.96 GHz和2.66 GHz,平均实际增益约为7.0 dBi,带外抑制水平超过39 dB。Abstract: This paper presents a compact filtering patch antenna with independent controllable radiation nulls. The antenna is principally composed of a simple radiation patch antenna and two split-shaped slots. Taking the basic microstrip patch antenna as the prototype, the filtering and frequency selection function is generated by adding the segmenting slot. Two broadside radiation nulls are generated by two slots in the upper/lower band respectively. According to the circuit structure, HFSS simulation software is used to optimize the structure and adjust the feeding position, and the filtering function is obtained. Without using additional filtering circuits, this design method saves space size and reduces the loss of antenna gain. For demonstration, a prototype is fabricated and tested. The simulation results agree well with the measured ones: the proposed microstrip patch filter antenna operates at 2.40 GHz; there are two radiation nulls at 1.96 and 2.66 GHz at two band-edges of the boresight gain response for improving skirt selectivity; at the same time, the frequency of the two radiation nulls can be controlled independently by controlling the length of the two split slots, increasing the flexibility of the design; the average realized gain of this filtering antenna is about 7.0 dBi and the out-of-band suppression level is more than 39 dB.
-
表 1 与其他报道的宽带滤波天线的性能比较
Table 1. Performance comparison with other reported wideband filtering antennas
filtering
structurecomplexity independent controllable
radiation nullssize average
gain/dBsuppression
level/dBRef [12] 1 U-shaped slot, 3 shorting pins, 1 stacked patch complex 0 1.15λ0×1.15λ0 9.74 21.5 Ref [14] 1 patch radiator,1 stub-loaded inverted-F radiator complex 0 0.44λ0×0.42λ0 6.4 16.8 Ref [15] 4 slots simple 2 0.7λ0×0.6λ0 6.6 15.0 our work two split-shaped slots simple 2 0.89λ0×0.89λ0 7.0 39.0 -
[1] 张垚. 滤波器与天线的协同融合设计研究[D]. 广州: 华南理工大学, 2019: 3-21Zhang Yao. Research on integrated design method of filter and antenna[D]. Guangzhou: South China University of Technology, 2019: 3-21 [2] 胡鹏飞. 滤波天线融合设计技术研究[D]. 广州: 华南理工大学, 2019: 5-13Hu Pengfei. Investigations on the fusion design of filtering antennas[D]. Guangzhou: South China University of Technology, 2019: 5-13 [3] 陈佩瑶. 基于耦合贴片阵列的滤波天线设计[D]. 成都: 电子科技大学, 2021: 2-10Chen Peiyao. Design of filter antennas based on the coupled patch array[D]. Chengdu: University of Electronic Science and Technology of China, 2021: 2-10 [4] Yang Li, Cheong P, Han Liang, et al. Miniaturized parallel coupled-line filter-antenna with spurious response suppression[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 726-729. doi: 10.1109/LAWP.2011.2162054 [5] Mao Chunxu, Zhang Yao, Zhang Xiuyin, et al. Filtering antennas: design methods and recent developments[J]. IEEE Microwave Magazine, 2021, 22(11): 52-63. doi: 10.1109/MMM.2021.3102199 [6] 王鹏飞, 张海福, 朱海波. 一种应用于2.4 GHz的宽带差分微带滤波天线[J]. 无线电通信技术, 2020, 46(4):471-474 doi: 10.3969/j.issn.1003-3114.2020.04.015Wang Pengfei, Zhang Haifu, Zhu Haibo. A wideband differential-fed microstrip filtering patch antenna working at 2.4 GHz[J]. Radio Communications Technology, 2020, 46(4): 471-474 doi: 10.3969/j.issn.1003-3114.2020.04.015 [7] Sun Wei, Liu Shuxuan, Zhu Xu, et al. A novel 1.05 GHz to 1.25 GHz filtering antenna feeding network with reconfigurable frequency and polarization[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(1): 156-166. doi: 10.1109/TAP.2021.3109794 [8] Chen Chunling. A compact wideband filtering omnidirectional dipole antenna without extra circuits[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(3): 1729-1739. doi: 10.1109/TAP.2021.3111189 [9] Cao Yunfei, Zhang Xiuyin, Xue Quan. Compact shared-aperture dual-band dual-polarized array using filtering slot antenna and dual-function metasurface[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(2): 1120-1131. doi: 10.1109/TAP.2021.3111179 [10] Zhang Yingqi, Yang Wanchen, Xue Quan, et al. Broadband dual-polarized differential-fed filtering antenna array for 5G millimeter-wave applications[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(3): 1989-1998. doi: 10.1109/TAP.2021.3118800 [11] Hu Pengfei, Pan Yongmei, Zhang Xiuyin, et al. A filtering patch antenna with reconfigurable frequency and bandwidth using F-shaped probe[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(1): 121-130. doi: 10.1109/TAP.2018.2877301 [12] Chuang Chaotang, Chung S J. Synthesis and design of a new printed filtering antenna[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(3): 1036-1042. doi: 10.1109/TAP.2010.2103001 [13] Zhang Xiuyin, Duan Wen, Pan Yongmei. High-gain filtering patch antenna without extra circuit[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5883-5888. doi: 10.1109/TAP.2015.2481484 [14] Yang Wanchen, Zhang Yingqi, Chen Wenquan, et al. A simple, compact filtering patch antenna based on mode analysis with wide out-of-band suppression[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(10): 6244-6253. doi: 10.1109/TAP.2019.2922770 [15] Li Mei, Tian Sijie, Tang Mingchun, et al. A compact low-profile hybrid-mode patch antenna with intrinsically combined self-decoupling and filtering properties[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(2): 1511-1516. doi: 10.1109/TAP.2021.3111638 [16] Jin Junye, Liao Shaowei, Xue Quan. Design of filtering-radiating patch antennas with tunable radiation nulls for high selectivity[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(4): 2125-2130. doi: 10.1109/TAP.2018.2804661