留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种辐射零点可控的紧凑型滤波贴片天线

马敬伟 周东方 张毅 吕大龙

马敬伟, 周东方, 张毅, 等. 一种辐射零点可控的紧凑型滤波贴片天线[J]. 强激光与粒子束, 2023, 35: 023007. doi: 10.11884/HPLPB202335.220278
引用本文: 马敬伟, 周东方, 张毅, 等. 一种辐射零点可控的紧凑型滤波贴片天线[J]. 强激光与粒子束, 2023, 35: 023007. doi: 10.11884/HPLPB202335.220278
Ma Jingwei, Zhou Dongfang, Zhang Yi, et al. A compact filtering patch antenna with independent controllable radiation nulls[J]. High Power Laser and Particle Beams, 2023, 35: 023007. doi: 10.11884/HPLPB202335.220278
Citation: Ma Jingwei, Zhou Dongfang, Zhang Yi, et al. A compact filtering patch antenna with independent controllable radiation nulls[J]. High Power Laser and Particle Beams, 2023, 35: 023007. doi: 10.11884/HPLPB202335.220278

一种辐射零点可控的紧凑型滤波贴片天线

doi: 10.11884/HPLPB202335.220278
基金项目: 国家自然科学基金项目(61871405)
详细信息
    作者简介:

    马敬伟,546310700@qq.com

    通讯作者:

    周东方,13598028188@139.com

  • 中图分类号: TN822

A compact filtering patch antenna with independent controllable radiation nulls

  • 摘要: 提出了一种辐射零点可控的紧凑型滤波贴片天线。该滤波天线以基本的微带贴片天线为原型,主要由一个简单的金属辐射贴片和两个对称的分割形槽组成。两个分割形槽蚀刻在金属贴片上,使得高/低频段分别产生两个宽边辐射零点,从而引入滤波选频功能。该结构未引入额外滤波电路和其他寄生单元,节省了空间尺寸,结构更加紧凑;两个辐射零点独立可控,提高了设计的灵活度。且在实现滤波选频功能的同时,对天线增益的影响很小。利用HFSS仿真软件优化滤波天线结构,制作了一个实物模型并进行了测试。测试结果与仿真结果基本一致。测试结果表明,提出的滤波天线工作在2.40 GHz,两个独立可控的辐射零点分别位于1.96 GHz和2.66 GHz,平均实际增益约为7.0 dBi,带外抑制水平超过39 dB。
  • 图  1  演变过程的俯视图

    Figure  1.  Top view of the evolution process

    图  2  天线I, II, III的仿真结果

    Figure  2.  Simulated results of the designed antennas I, II and III

    图  3  零点频率时电流分布

    Figure  3.  Electric current distributions

    图  4  所提出的滤波天线的俯视图

    Figure  4.  Top view of the proposed filtering antenna

    图  6  滤波天线的独立可控辐射零点

    Figure  6.  Independent controllable radiation nulls of the filter antenna

    图  7  所提滤波天线的仿真/测量结果

    Figure  7.  Simulated/measured results of the proposed filtering antenna

    图  5  所提出的滤波天线的实物模型图

    Figure  5.  Photograph of the proposed filtering antenna prototype

    图  8  2.4 GHz的E(xOz)和H(yOz)平面的归一化辐射方向图

    Figure  8.  Simulated and measured radiation patterns of the antenna in E-plane and H-plane at 2.4 GHz

    表  1  与其他报道的宽带滤波天线的性能比较

    Table  1.   Performance comparison with other reported wideband filtering antennas

    filtering
    structure
    complexityindependent controllable
    radiation nulls
    sizeaverage
    gain/dB
    suppression
    level/dB
    Ref [12]1 U-shaped slot, 3 shorting pins, 1 stacked patchcomplex01.15λ0×1.15λ09.7421.5
    Ref [14]1 patch radiator,1 stub-loaded inverted-F radiatorcomplex00.44λ0×0.42λ06.416.8
    Ref [15]4 slotssimple20.7λ0×0.6λ06.615.0
    our worktwo split-shaped slotssimple20.89λ0×0.89λ07.039.0
    下载: 导出CSV
  • [1] 张垚. 滤波器与天线的协同融合设计研究[D]. 广州: 华南理工大学, 2019: 3-21

    Zhang Yao. Research on integrated design method of filter and antenna[D]. Guangzhou: South China University of Technology, 2019: 3-21
    [2] 胡鹏飞. 滤波天线融合设计技术研究[D]. 广州: 华南理工大学, 2019: 5-13

    Hu Pengfei. Investigations on the fusion design of filtering antennas[D]. Guangzhou: South China University of Technology, 2019: 5-13
    [3] 陈佩瑶. 基于耦合贴片阵列的滤波天线设计[D]. 成都: 电子科技大学, 2021: 2-10

    Chen Peiyao. Design of filter antennas based on the coupled patch array[D]. Chengdu: University of Electronic Science and Technology of China, 2021: 2-10
    [4] Yang Li, Cheong P, Han Liang, et al. Miniaturized parallel coupled-line filter-antenna with spurious response suppression[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 726-729. doi: 10.1109/LAWP.2011.2162054
    [5] Mao Chunxu, Zhang Yao, Zhang Xiuyin, et al. Filtering antennas: design methods and recent developments[J]. IEEE Microwave Magazine, 2021, 22(11): 52-63. doi: 10.1109/MMM.2021.3102199
    [6] 王鹏飞, 张海福, 朱海波. 一种应用于2.4 GHz的宽带差分微带滤波天线[J]. 无线电通信技术, 2020, 46(4):471-474 doi: 10.3969/j.issn.1003-3114.2020.04.015

    Wang Pengfei, Zhang Haifu, Zhu Haibo. A wideband differential-fed microstrip filtering patch antenna working at 2.4 GHz[J]. Radio Communications Technology, 2020, 46(4): 471-474 doi: 10.3969/j.issn.1003-3114.2020.04.015
    [7] Sun Wei, Liu Shuxuan, Zhu Xu, et al. A novel 1.05 GHz to 1.25 GHz filtering antenna feeding network with reconfigurable frequency and polarization[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(1): 156-166. doi: 10.1109/TAP.2021.3109794
    [8] Chen Chunling. A compact wideband filtering omnidirectional dipole antenna without extra circuits[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(3): 1729-1739. doi: 10.1109/TAP.2021.3111189
    [9] Cao Yunfei, Zhang Xiuyin, Xue Quan. Compact shared-aperture dual-band dual-polarized array using filtering slot antenna and dual-function metasurface[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(2): 1120-1131. doi: 10.1109/TAP.2021.3111179
    [10] Zhang Yingqi, Yang Wanchen, Xue Quan, et al. Broadband dual-polarized differential-fed filtering antenna array for 5G millimeter-wave applications[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(3): 1989-1998. doi: 10.1109/TAP.2021.3118800
    [11] Hu Pengfei, Pan Yongmei, Zhang Xiuyin, et al. A filtering patch antenna with reconfigurable frequency and bandwidth using F-shaped probe[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(1): 121-130. doi: 10.1109/TAP.2018.2877301
    [12] Chuang Chaotang, Chung S J. Synthesis and design of a new printed filtering antenna[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(3): 1036-1042. doi: 10.1109/TAP.2010.2103001
    [13] Zhang Xiuyin, Duan Wen, Pan Yongmei. High-gain filtering patch antenna without extra circuit[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5883-5888. doi: 10.1109/TAP.2015.2481484
    [14] Yang Wanchen, Zhang Yingqi, Chen Wenquan, et al. A simple, compact filtering patch antenna based on mode analysis with wide out-of-band suppression[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(10): 6244-6253. doi: 10.1109/TAP.2019.2922770
    [15] Li Mei, Tian Sijie, Tang Mingchun, et al. A compact low-profile hybrid-mode patch antenna with intrinsically combined self-decoupling and filtering properties[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(2): 1511-1516. doi: 10.1109/TAP.2021.3111638
    [16] Jin Junye, Liao Shaowei, Xue Quan. Design of filtering-radiating patch antennas with tunable radiation nulls for high selectivity[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(4): 2125-2130. doi: 10.1109/TAP.2018.2804661
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  868
  • HTML全文浏览量:  378
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-02
  • 修回日期:  2022-11-23
  • 网络出版日期:  2022-11-28
  • 刊出日期:  2023-01-14

目录

    /

    返回文章
    返回