留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合结构掠入射板条放大器热效应的模拟分析

王万祎 陈方军 公丕华 贾全能 张英华 张祎景 王杰 赵子竣

王万祎, 陈方军, 公丕华, 等. 复合结构掠入射板条放大器热效应的模拟分析[J]. 强激光与粒子束, 2023, 35: 031004. doi: 10.11884/HPLPB202335.220293
引用本文: 王万祎, 陈方军, 公丕华, 等. 复合结构掠入射板条放大器热效应的模拟分析[J]. 强激光与粒子束, 2023, 35: 031004. doi: 10.11884/HPLPB202335.220293
Wang Wanyi, Chen Fangjun, Gong Pihua, et al. Thermal effect study of composite configuration grazing-incidence slab amplifier[J]. High Power Laser and Particle Beams, 2023, 35: 031004. doi: 10.11884/HPLPB202335.220293
Citation: Wang Wanyi, Chen Fangjun, Gong Pihua, et al. Thermal effect study of composite configuration grazing-incidence slab amplifier[J]. High Power Laser and Particle Beams, 2023, 35: 031004. doi: 10.11884/HPLPB202335.220293

复合结构掠入射板条放大器热效应的模拟分析

doi: 10.11884/HPLPB202335.220293
基金项目: 激光院青年科技创新项目(K210035-020)
详细信息
    作者简介:

    王万祎,wangwanyi209@126.com

  • 中图分类号: TN248.1

Thermal effect study of composite configuration grazing-incidence slab amplifier

  • 摘要: 为了研究复合结构掠入射板条放大器的热效应,采用在Nd:YVO4晶体抽运面上键合具有高热导率性能的蓝宝石的复合结构,并建立了相应的热力学模型,对激光介质的温度场分布、光程差(OPD)和热透镜效应进行了详细的理论分析,利用有限元分析软件COMSOL模拟了晶体内部的温度、应变、光程差(OPD)及热焦距的分布情况。结果表明,板条厚度为2 mm、键合层厚度1 mm、抽运功率60 W时,复合结构相对于单一结构最高温度下降了约50 K,晶体中的最大形变量降低超过了1/3,极大地降低了介质中的热效应。
  • 图  1  复合结构板条放大器示意图

    Figure  1.  Composite configuration of the grazing-incidence laser

    图  2  晶体中温度场分布

    Figure  2.  Temperature distribution of each section of crystal

    图  3  晶体抽运面上的形变

    Figure  3.  Deformation of crystal on the pumping surface

    图  4  不同键合层厚度总OPD分布图

    Figure  4.  OPD distribution of different bonding thickness

    图  5  热焦距随泵浦功率的模拟计算

    Figure  5.  Simulation of thermal focal length vs pump power

  • [1] Paschotta R. Encyclopedia of laser physics and technology[M]. Weinheim: Wiley-VCH, 2008.
    [2] Kane T J, Eckardt R C, Byer R L. Reduced thermal focusing and birefringence in zig-zag slab geometry crystalline lasers[J]. IEEE Journal of Quantum Electronics, 1983, 19(9): 1351-1354. doi: 10.1109/JQE.1983.1072061
    [3] Eggleston J M, Kane T J, Kuhn K, et al. The slab geometry laser—Part I: theory[J]. IEEE Journal of Quantum Electronics, 1984, 20(3): 289-301. doi: 10.1109/JQE.1984.1072386
    [4] Teppitaksak A, Thomas G M, Damzen M J. Investigation of a versatile pulsed laser source based on a diode seed and ultra-high gain bounce geometry amplifiers[J]. Optics Express, 2015, 23(9): 12328-12336. doi: 10.1364/OE.23.012328
    [5] Bernard J E, Alcock A J. High-efficiency diode-pumped Nd: YVO4 slab laser[J]. Optics Letters, 1993, 18(12): 968-970. doi: 10.1364/OL.18.000968
    [6] Rutherford T S, Tulloch W M, Sinha S, et al. Yb: YAG and Nd: YAG edge-pumped slab lasers[J]. Optics Letters, 2001, 26(13): 986-988. doi: 10.1364/OL.26.000986
    [7] Eggleston J M, Frantz L M, Injeyan H. Deviation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers[J]. IEEE Journal of Quantum Electronics, 1989, 25(8): 1855-1862. doi: 10.1109/3.34045
    [8] Dallas J L, Afzal R S. Modeling of a diode-side-pumped Nd: YAG laser[J]. Applied Optics, 1998, 37(12): 2365-2370. doi: 10.1364/AO.37.002365
    [9] Furukawa H, Hiura N, Kato Y, et al. Evaluation of thermal birefringence power loss in the laser-diode-pumped Nd: glass laser[C]//Proceedings of SPIE. 2000, 3889: 610-618.
    [10] Kanabe T, Kawashima T, Matsui H, et al. Laser-diode-pumped 10-J X 10-Hz Nd: glass slab laser system[C]//Proceedings of SPIE 3889. 2000: 190-197.
    [11] 刘亮, 郭少锋, 陆启生, 等. 传导冷却端面泵浦板条放大器波前畸变数值研究[J]. 强激光与粒子束, 2009, 21(7):987-992

    Liu Liang, Guo Shaofeng, Lu Qisheng, et al. Thermal distortion analysis for conduction cooled end-pumped slab[J]. High Power Laser and Particle Beams, 2009, 21(7): 987-992
    [12] Kaskow M, Zendzian W, Jabczynski J K. Near-diffraction-limited, high peak power, electro-optically Q-switched, diode-side-pumped Nd: YVO4 grazing-incidence oscillator[J]. Optics & Laser Technology, 2015, 65: 50-55.
    [13] Amarande Ş A, Damzen M J. Measurement of the thermal lens of grazing-incidence diode-pumped Nd: YVO4 laser amplifier[J]. Optics Communications, 2006, 265(1): 306-313. doi: 10.1016/j.optcom.2006.03.013
    [14] Chen Zhuo, Yan Xingpeng, Jiang Xiaoyu, et al. The thermal effect in a grazing-incidence slab laser with the novel composite cooling method[J]. Optical and Quantum Electronics, 2009, 41(1): 27-38. doi: 10.1007/s11082-009-9315-0
    [15] Bermudez J C, Pinto-Robledo V J, Kir’yanov A V, et al. The thermo-lensing effect in a grazing incidence, diode-side-pumped Nd: YVO4 laser[J]. Optics Communications, 2002, 210(1/2): 75-82.
    [16] Yan Xingpeng, Gong Mali, He Fahong, et al. Numerical modeling of the thermal lensing effect in a grazing-incidence laser[J]. Optics Communications, 2009, 282(9): 1851-1857. doi: 10.1016/j.optcom.2009.01.019
    [17] 王万祎, 雷訇, 郭猛, 等. 掠入射板条放大器链的热效应模拟分析[J]. 强激光与粒子束, 2015, 27:051009 doi: 10.11884/HPLPB201527.051009

    Wang Wanyi, Lei Hong, Guo Meng, et al. Thermal effect study of grazing-incidence amplifier chain[J]. High Power Laser and Particle Beams, 2015, 27: 051009 doi: 10.11884/HPLPB201527.051009
    [18] 唐超, 徐霜馥, 张翔, 等. 掠入射Nd: YVO4板条激光放大器的优化设计[J]. 中国激光, 2017, 44:1201003 doi: 10.3788/CJL201744.1201003

    Tang Chao, Xu Shuangfu, Zhang Xiang, et al. Optimization design of Nd: YVO4 slab laser amplifier with grazing incidence[J]. Chinese Journal of Lasers, 2017, 44: 1201003 doi: 10.3788/CJL201744.1201003
    [19] 季林涛, 邹岩, 李之通, 等. 改善Nd: YAG掠入射板条激光器增益介质热效应的研究[J]. 中国激光, 2017, 44:1101005 doi: 10.3788/CJL201744.1101005

    Ji Lintao, Zou Yan, Li Zhitong, et al. Improvement of gain medium thermal effect in Nd: YAG grazing incidence slab laser[J]. Chinese Journal of Lasers, 2017, 44: 1101005 doi: 10.3788/CJL201744.1101005
    [20] 沈利沣, 姜洪波, 赵志刚, 等. 掠入射Nd: YVO4板条结构皮秒激光放大器的实验研究[J]. 中国激光, 2016, 43:1101004 doi: 10.3788/CJL201643.1101004

    Shen Lifeng, Jiang Hongbo, Zhao Zhigao, et al. Experimental study of picosecond laser amplifier based on grazing incidence Nd: YVO4 slab geometry[J]. Chinese Journal of Lasers, 2016, 43: 1101004 doi: 10.3788/CJL201643.1101004
  • 加载中
图(5)
计量
  • 文章访问数:  595
  • HTML全文浏览量:  217
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-15
  • 修回日期:  2023-02-09
  • 网络出版日期:  2023-01-12
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回