留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

各向异性介质中电偶极子的太赫兹辐射特性

李应乐 王明军

李应乐, 王明军. 各向异性介质中电偶极子的太赫兹辐射特性[J]. 强激光与粒子束, 2023, 35: 063003. doi: 10.11884/HPLPB202335.220331
引用本文: 李应乐, 王明军. 各向异性介质中电偶极子的太赫兹辐射特性[J]. 强激光与粒子束, 2023, 35: 063003. doi: 10.11884/HPLPB202335.220331
Li Yingle, Wang Mingjun. THz radiation characteristics of the electric dipole in anisotropic media[J]. High Power Laser and Particle Beams, 2023, 35: 063003. doi: 10.11884/HPLPB202335.220331
Citation: Li Yingle, Wang Mingjun. THz radiation characteristics of the electric dipole in anisotropic media[J]. High Power Laser and Particle Beams, 2023, 35: 063003. doi: 10.11884/HPLPB202335.220331

各向异性介质中电偶极子的太赫兹辐射特性

doi: 10.11884/HPLPB202335.220331
基金项目: 国家自然科学基金项目(61102018 , 61271110)
详细信息
    作者简介:

    李应乐, liyinglexidian@126.com

  • 中图分类号: O436.2

THz radiation characteristics of the electric dipole in anisotropic media

  • 摘要: 研究了THz波段强降雨环境下电磁源的辐射特性。基于通用的麦克斯韦方程组和解析分析,提出了各向异性介质中的洛仑兹规范,得到了矢量势的非齐次波动方程及矢量势的精确表达式,并证明了它们的有效性。获得了各向异性介质中电偶极子的辐射场,将各向异性介质退化为各向同性时,得到的辐射场与已有资料中的辐射场一致。基于石膏晶体和强降雨介质的各向异性参数,对电偶极子的辐射特性进行了物理模拟和分析,结果发现:介质的各向异性对其中电磁源辐射有着显著的影响,强降雨中电磁源的辐射具有较弱的各向异性。
  • 图  1  能流密度随$\theta$的变化

    Figure  1.  Variation of energy flux density with angle $\theta$

    f=0.3 THz, θ0=π/4, φ0=π/4

    图  2  能流密度随$\phi$的变化

    Figure  2.  Variation of energy flux density with angle $\phi$

    f=0.3 THz, θ0=π/4, φ0=π/4

    图  3  能流密度随${\theta}$${\varphi}$的变化

    Figure  3.  Variation of energy flux density with angles ${\theta}$ and ${\varphi}$

    图  4  距离的变化$r$y轴方向辐射的影响

    Figure  4.  Radiation of y-direction varies with distance $r$

    图  5  仰起角对辐射的影响

    Figure  5.  Radiation of y-direction varies with elevation angle

    r=3.5 km f=0.4 THz, Idl1=0.6235Idl, Idl2=0.4717Idl, Idl3=0.6235Idl

    图  6  初始方位角对分量$\left| {\Delta {E_\theta }} \right|$的影响

    Figure  6.  Variation of the component $\left| {\Delta {E_\theta }} \right|$ with the initial azimuth

    图  7  初始方位角对分量$\left| {\Delta {E_\phi }} \right|$的影响

    Figure  7.  Variation of the component $\left| {\Delta {E_\phi }} \right|$ with the initial azimuth

    图  8  距离的变化ry轴方向辐射的影响

    Figure  8.  Radiation of y-direction with distance $r$

    $f = 0.34 \; {\rm{TH}{\textit{z}}},I{\rm{d}}{l_1} = 0.6235I{\rm{d}}l,I{\rm{d}}{l_2} = 0.4717I{\rm{d}}l,I{\rm{d}}{l_3} = 0.6235I{\rm{d}}l$

    图  9  初始方位角对分量$\left| {\Delta {E_\phi}} \right|$的影响

    Figure  9.  Variation of the component $\left| {\Delta {E_\phi}} \right|$ with the initial azimuth

  • [1] 李佳蓬, 夏岚松, 张平, 等. 各向异性堆叠结构环氧树脂复合材料的热防护性能[J]. 强激光与粒子束, 2020, 32:031003 doi: 10.11884/hplpb202032.190342

    Li Jiapeng, Xia Lansong, Zhang Ping, et al. Anisotropic stacked epoxy composites with excellent thermal properties[J]. High Power Laser and Particle Beams, 2020, 32: 031003 doi: 10.11884/hplpb202032.190342
    [2] 周建华, 罗海陆, 文双春. 各向异性超常介质中的反常线性现象[J]. 强激光与粒子束, 2010, 22(8):1795-1798 doi: 10.3788/HPLPB20102208.1795

    Zhou Jianhua, Luo Hailu, Wen Shuangchun. Anomalous linear phenomena of anisotropic metamaterial[J]. High Power Laser and Particle Beams, 2010, 22(8): 1795-1798 doi: 10.3788/HPLPB20102208.1795
    [3] 杨利霞, 王袆君, 谢应涛, 等. 截断各向异性等离子体的修正各向异性完全匹配层吸收边界[J]. 强激光与粒子束, 2011, 23(1):156-160 doi: 10.3788/HPLPB20112301.0156

    Yang Lixia, Wang Yijun, Xie Yingtao, et al. Modified uniaxial perfectly matched layer absorbing boundary condition for anisotropic dispersion media[J]. High Power Laser and Particle Beams, 2011, 23(1): 156-160 doi: 10.3788/HPLPB20112301.0156
    [4] Stout B, Nevière M, Popov E. T matrix of the homogeneous anisotropic sphere: applications to orientation-averaged resonant scattering[J]. Journal of the Optical Society of America A, 2007, 24(4): 1120-1130. doi: 10.1364/JOSAA.24.001120
    [5] 李正军, 吴振森, 屈檀, 等. 单轴各向异性球对任意方向入射平面波的散射[J]. 电波科学学报, 2014, 29(4):668-672

    Li Zhengjun, Wu Zhensen, Qu Tan, et al. Arbitrary direction incident plane wave scattering by a uniaxial anisotropic sphere[J]. Chinese Journal of Radio Science, 2014, 29(4): 668-672
    [6] Xu Xibin, Yi Zao, Li Xibo, et al. Discrete dipole approximation simulation of the surface Plasmon resonance of core/shell nanostructure and the study of resonance cavity effect[J]. The Journal of Physical Chemistry C, 2012, 116(45): 24046-24053. doi: 10.1021/jp306238x
    [7] Wong K L, Chen H T. Electromagnetic scattering by a uniaxially anisotropic sphere[J]. IEE Proceedings H (Microwaves, Antennas and Propagation), 1992, 139(4): 314-318. doi: 10.1049/ip-h-2.1992.0056
    [8] Qiu Chengwei, Li Lewei, Yeo T S, et al. Scattering by rotationally symmetric anisotropic spheres: potential formulation and parametric studies[J]. Physical Review E, 2007, 75: 026609. doi: 10.1103/PhysRevE.75.026609
    [9] Stout B, Nevière M, Popov E. Mie scattering by an anisotropic object. Part I. Homogeneous sphere[J]. Journal of the Optical Society of America A, 2006, 23(5): 1111-1123. doi: 10.1364/JOSAA.23.001111
    [10] Stout B, Nevière M, Popov E. Mie scattering by an anisotropic object. Part II. Arbitrary-shaped object: differential theory[J]. Journal of the Optical Society of America A, 2006, 23(5): 1124-1134. doi: 10.1364/JOSAA.23.001124
    [11] Zhuck N P, Omar A S. Radiation and low-frequency scattering of EM waves in a general anisotropic homogeneous medium[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(8): 1364-1373. doi: 10.1109/8.791956
    [12] 程筱军, 耿友林. 两层旋电磁介质球电磁散射的球矢量波函数解[J]. 电波科学学报, 2014, 29(3):509-514 doi: 10.13443/j.cjors.2013053103

    Cheng Xiaojun, Geng Youlin. Spherical vector wave function solution to a plane wave scattering by two concentric gyrotropic anisotropic spheres[J]. Chinese Journal of Radio Science, 2014, 29(3): 509-514 doi: 10.13443/j.cjors.2013053103
    [13] Ren Wei. Contributions to the electromagnetic wave theory of bounded homogeneous anisotropic media[J]. Physical Review E, 1993, 47(1): 664-673. doi: 10.1103/PhysRevE.47.664
    [14] Geng Youlin, Wu Xinbao, Li Lewei, et al. Mie scattering by a uniaxial anisotropic sphere[J]. Physical Review E, 2004, 70: 056609. doi: 10.1103/PhysRevE.70.056609
    [15] De Matthaeis P, Lang R H. Microwave scattering models for cylindrical vegetation components[J]. Progress in Electromagnetics Research, 2005, 55: 307-333. doi: 10.2528/PIER05040602
    [16] Jin Yuwen, Gao Dongliang, Gao Lei. Plasmonic resonant light scattering by a cylinder with radial anisotropy[J]. Progress in Electromagnetics Research, 2010, 106: 335-347. doi: 10.2528/PIER10060601
    [17] 杨利霞, 谢应涛, 孔娃, 等. 斜入射分层线性各向异性等离子体电磁散射时域有限差分方法分析[J]. 物理学报, 2010, 59(9):6089-6095 doi: 10.7498/aps.59.6089

    Yang Lixia, Xie Yingtao, Kong Wa, et al. A novel finite difference time-domain scheme for electromagnetic scattering by stratified anisotropic plasma under oblique incidence condition[J]. Acta Physica Sinica, 2010, 59(9): 6089-6095 doi: 10.7498/aps.59.6089
    [18] Yu Wenhua, Mittra R. A conformal finite difference time domain technique for modeling curved dielectric surfaces[J]. IEEE Microwave and Wireless Components Letters, 2001, 11(1): 25-27. doi: 10.1109/7260.905957
    [19] Wang Jian, Yin Wenyan, Liu Peiguo, et al. High-order interface treatment techniques for modeling curved dielectric objects[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(9): 2946-2953. doi: 10.1109/TAP.2010.2052562
    [20] David K C. Field and wave electromagnetics[M]. Reading: Addison-Wesley, 1989.
    [21] 李海英. 复杂粒子体系对波束的散射及其应用[D]. 西安: 西安电子科技大学, 2009

    Li Haiying. Scattering properties and applications of complex particle systems illuminated by shaped beam[D]. Xi’an: Xidian University, 2009
    [22] Li Jin, Feng Xiaoyi. Scattering of a finite length anisotropic medium cylinder[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31: e22900.
    [23] Kao C C. Electromagnetic scattering from a finite tubular cylinder: numerical solutions[J]. Radio Science, 1970, 5(3): 617-624. doi: 10.1029/RS005i003p00617
    [24] Vanderlinde J. Classical electromagnetic theory[M]. 2nd ed, Dordrecht: Springer, 2004.
    [25] 王一平. 工程电动力学[M]. 2版. 西安: 西安电子科技大学出版社, 2007

    Wang Yiping. Electrodynamics in engineering[M]. 2nd ed. Xi’an: Xidian University Press, 2007
    [26] Li Jin, Feng Xiaoyi. Characteristics of scattering for anisotropic particles in photoelectric electromagnetic beam[J]. Progress in Electromagnetics Research M, 2018, 66: 41-52. doi: 10.2528/PIERM17112702
    [27] Stratton J A. Electromagnetic theory[M]. New York: McGraw-Hill, 1941.
    [28] Maxwell Garnett J C. Colours in metal glasses, in metallic films, and in metallic solutions. II[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1906, 205: 237-288.
    [29] Recommendation P. 838-1: Specific attenuation model for rain for use in prediction methods.
  • 加载中
图(9)
计量
  • 文章访问数:  461
  • HTML全文浏览量:  195
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-29
  • 修回日期:  2023-03-03
  • 录用日期:  2023-02-03
  • 网络出版日期:  2023-04-03
  • 刊出日期:  2023-05-06

目录

    /

    返回文章
    返回