Microfluidic plasma: novel process intensification technique
-
摘要:
作为一种新型高效的过程强化技术,微流控等离子体具备微流控及等离子体技术优势,能够提高反应过程的均一性及稳定性,控制反应接触界面,在增加活性物质的密度的同时避免物种的快速猝灭。介绍了微流控等离子体中的活性组分及相应的表征手段,归纳了几种反应器结构并对比了优缺点。系统阐述了微流控等离子体过程强化技术在化学合成、表面改性、材料制备、污染物检测和生物医学领域中的应用,并立足于当前研究现状对该技术的发展趋势进行讨论与展望。
Abstract:Microfluidic plasma is a new process intensification strategy that combines the advantages of both microfluidic and plasma techniques. It can improve the uniformity and stability of the reaction process, control the reaction contact interface, and avoid rapid quenching of the species while increasing density of the active substances. This work summarizes representative radicals existed in microfluidic plasma and the relevant characterization techniques. Then, the microfluidic plasmas are classified into three categories based on the characteristic structure of the reactors. Afterwards, selective examples are given to demonstrate typical applications of the microfluidic plasma process intensification strategy, such as chemical synthesis, surface modification, nanomaterials preparation, contaminant detection, and biomedical purpose. Finally, the development trend of this technique is prospected.
-
Key words:
- microfluidic plasma /
- process intensification /
- microfluidic /
- plasma /
- nanomaterial
-
表 1 微流控等离子体中常见的活性物种、检测方法和生成机理
Table 1. Typical reactive species, analytical methods, and formation mechanisms in microfluidic plasma
type condition detection method detection mechanism references H He/H2O(g) EPR
spin trapping with isotopesH2O+e*→OH+H+e [31] OH He/H2O(g) MBMS/CRCRDS
phenol probe methodH+HO2→OH+OH
O+H2O→2OH
e−+H2O→e-+OH+H[28]
[31]O He/O2 OES/TALIF
MBMS/ TALIFe+O2→O*2+e
O*+O2→O*+O[32]
[33]N He/O2 OES/TALIF N2+e→N++N+2e [34] N2+ He/N2 PIC/MCC e−+He→e−+e−+He+
e−+N2→e−+e−+N2+[29] O3 He/O2 OES/TALIF O+O2+He→O3+He [35] O+ He/O2 OES/TALIF e+O2→O++O+2e [36] O* He/O2 IR e+O2→O*2+e
O*2+O3→2O2+O*[37] NO He/O2/N2 LIF N+O2→NO+O
N2+O→NO+N[30] H2O2 He/O2 EPR
isotope notatione−+H2O→e−+OH+H
OH+OH+He→H2O2+He[38] -
[1] 马连湘, 李庆领, 刘炳成, 等. 过程工业中的节能潜力及节能措施[J]. 东莞理工学院学报, 2006, 13(4):109-112 doi: 10.3969/j.issn.1009-0312.2006.04.018Ma Lianxiang, Li Qingling, Liu Bingcheng, et al. Energy conservation potential and energy-saving measures for process industry[J]. Journal of Dongguan University of Technology, 2006, 13(4): 109-112 doi: 10.3969/j.issn.1009-0312.2006.04.018 [2] 刘有智. 谈过程强化技术促进化学工业转型升级和可持续发展[J]. 化工进展, 2018, 37(4):1203-1211 doi: 10.16085/j.issn.1000-6613.2018-0064Liu Youzhi. Discussion on process intensification technology to promote the transformation, upgrading and sustainable development of chemical industry[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1203-1211 doi: 10.16085/j.issn.1000-6613.2018-0064 [3] Ivanov I A, Tikhonov V N, Tikhonov A V. Microwave complex for obtaining low-temperature plasma at atmospheric pressure[J]. Journal of Physics: Conference Series, 2019, 1393: 012042. doi: 10.1088/1742-6596/1393/1/012042 [4] Fox-Lyon N, Knoll A J, Franek J, et al. Determination of Ar metastable atom densities in Ar and Ar/H2 inductively coupled low-temperature plasmas[J]. Journal of Physics D: Applied Physics, 2013, 46: 485202. doi: 10.1088/0022-3727/46/48/485202 [5] Sureshkumar A, Sankar R, Mandal M, et al. Effective bacterial inactivation using low temperature radio frequency plasma[J]. International Journal of Pharmaceutics, 2010, 396(1/2): 17-22. [6] Akhmadeev Y H, Denisov V V, Koval N N, et al. Generation of uniform low-temperature plasma in a pulsed non-self-sustained glow discharge with a large-area hollow cathode[J]. Plasma Physics Reports, 2017, 43(1): 67-74. doi: 10.1134/S1063780X17010020 [7] Bourke P, Ziuzina D, Han Lu, et al. Microbiological interactions with cold plasma[J]. Journal of Applied Microbiology, 2017, 123(2): 308-324. doi: 10.1111/jam.13429 [8] 李煊赫, 林良良, 汪盛, 等. 微等离子体合成纳米材料的研究进展[J]. 高校化学工程学报, 2021, 35(4):589-600 doi: 10.3969/j.issn.1003-9015.2021.04.002Li Xuanhe, Lin Liangliang, Wang Sheng, et al. Recent progress in the synthesis of nanomaterials by microplasma[J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(4): 589-600 doi: 10.3969/j.issn.1003-9015.2021.04.002 [9] Bruggeman P J, Kushner M J, Locke B R, et al. Plasma–liquid interactions: a review and roadmap[J]. Plasma Sources Science and Technology, 2016, 25: 053002. doi: 10.1088/0963-0252/25/5/053002 [10] Lin Liangliang, Starostin S A, Li Sirui, et al. Synthesis of metallic nanoparticles by microplasma[J]. Physical Sciences Reviews, 2018, 3: 20170121. [11] 王彦谦, 王远洋. 微反应器中费托合成的研究进展[J]. 化工进展, 2021, 40(s2):185-191 doi: 10.16085/j.issn.1000-6613.2021-0512Wang Yanqian, Wang Yuanyang. Research progress of Fischer-Tropsch synthesis in microreactor[J]. Chemical Industry and Engineering Progress, 2021, 40(s2): 185-191 doi: 10.16085/j.issn.1000-6613.2021-0512 [12] 冯俊杰, 孙冰, 石宁, 等. 微通道限域空间内的气泡破裂研究进展与展望[J]. 化工进展, 2021, 40(11):5907-5918 doi: 10.16085/j.issn.1000-6613.2020-2404Feng Junjie, Sun Bing, Shi Ning, et al. Bubble breakup under influence of confined structures in microchannel[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5907-5918 doi: 10.16085/j.issn.1000-6613.2020-2404 [13] Suryawanshi P L, Gumfekar S P, Bhanvase B A, et al. A review on microreactors: reactor fabrication, design, and cutting-edge applications[J]. Chemical Engineering Science, 2018, 189: 431-448. doi: 10.1016/j.ces.2018.03.026 [14] Jähnisch K, Hessel V, Löwe H, et al. Chemistry in microstructured reactors[J]. Angewandte Chemie International Edition, 2004, 43(4): 406-446. doi: 10.1002/anie.200300577 [15] Borra J P, Jidenko N, Hou Jun, et al. Vaporization of bulk metals into single-digit nanoparticles by non-thermal plasma filaments in atmospheric pressure dielectric barrier discharges[J]. Journal of Aerosol Science, 2015, 79: 109-125. doi: 10.1016/j.jaerosci.2014.09.002 [16] 闫婷婷. 大气压微等离子体辅助合成纳米颗粒的研究[D]. 上海: 上海交通大学, 2017Yan Tingting. Atmospheric pressure microplasma sythesis of nanoparticles[D]. Shanghai: Shanghai Jiao Tong University, 2017 [17] Schulz-von der Gathen V, Schaper L, Knake N, et al. Spatially resolved diagnostics on a microscale atmospheric pressure plasma jet[J]. Journal of Physics D: Applied Physics, 2008, 41: 194004. doi: 10.1088/0022-3727/41/19/194004 [18] Es-sebbar E, Benilan Y, Jolly A, et al. Characterization of an N2 flowing microwave post-discharge by OES spectroscopy and determination of absolute ground-state nitrogen atom densities by TALIF[J]. Journal of Physics D: Applied Physics, 2009, 42: 135206. doi: 10.1088/0022-3727/42/13/135206 [19] Bornholdt S, Wolter M, Kersten H. Characterization of an atmospheric pressure plasma jet for surface modification and thin film deposition[J]. The European Physical Journal D, 2010, 60(3): 653-660. doi: 10.1140/epjd/e2010-00245-x [20] Niemi K, Schulz-von der Gathen V, Döbele H F. Absolute atomic oxygen density measurements by two-photon absorption laser-induced fluorescence spectroscopy in an RF-excited atmospheric pressure plasma jet[J]. Plasma Sources Science and Technology, 2005, 14(2): 375-386. doi: 10.1088/0963-0252/14/2/021 [21] Döbele H F, Mosbach T, Niemi K, et al. Laser-induced fluorescence measurements of absolute atomic densities: concepts and limitations[J]. Plasma Sources Science and Technology, 2005, 14(2): S31-S41. doi: 10.1088/0963-0252/14/2/S05 [22] Amorim J, Baravian G, Jolly J. Laser-induced resonance fluorescence as a diagnostic technique in non-thermal equilibrium plasmas[J]. Journal of Physics D: Applied Physics, 2000, 33(9): R51-R65. doi: 10.1088/0022-3727/33/9/201 [23] Boogaarts M G H, Mazouffre S, Brinkman G J, et al. Quantitative two-photon laser-induced fluorescence measurements of atomic hydrogen densities, temperatures, and velocities in an expanding thermal plasma[J]. Review of Scientific Instruments, 2002, 73(1): 73-86. doi: 10.1063/1.1425777 [24] Knake N, Reuter S, Niemi K, et al. Absolute atomic oxygen density distributions in the effluent of a microscale atmospheric pressure plasma jet[J]. Journal of Physics D: Applied Physics, 2008, 41: 194006. doi: 10.1088/0022-3727/41/19/194006 [25] Schröder D, Bahre H, Knake N, et al. Influence of target surfaces on the atomic oxygen distribution in the effluent of a micro-scaled atmospheric pressure plasma jet[J]. Plasma Sources Science and Technology, 2012, 21: 024007. doi: 10.1088/0963-0252/21/2/024007 [26] Li Dong, Kong M G, Britun N, et al. Quantitative measurements of ground state atomic oxygen in atmospheric pressure surface micro-discharge array[J]. Journal of Physics D: Applied Physics, 2017, 50: 215201. doi: 10.1088/1361-6463/aa6c44 [27] Tresp H, Hammer M U, Winter J, et al. Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy[J]. Journal of Physics D: Applied Physics, 2013, 46: 435401. doi: 10.1088/0022-3727/46/43/435401 [28] Benedikt J, Schröder D, Schneider S, et al. Absolute OH and O radical densities in effluent of a He/H2O micro-scaled atmospheric pressure plasma jet[J]. Plasma Sources Science and Technology, 2016, 25: 045013. doi: 10.1088/0963-0252/25/4/045013 [29] Vass M, Wilczek S, Schulze J, et al. Electron power absorption in micro atmospheric pressure plasma jets driven by tailored voltage waveforms in He/N2[J]. Plasma Sources Science and Technology, 2021, 30: 105010. doi: 10.1088/1361-6595/ac278c [30] Preissing P, Korolov I, Schulze J, et al. Three-dimensional density distributions of NO in the effluent of the COST reference microplasma jet operated in He/N2/O2[J]. Plasma Sources Science and Technology, 2020, 29: 125001. doi: 10.1088/1361-6595/abbd86 [31] Gorbanev Y, Verlackt C C W, Tinck S, et al. Combining experimental and modelling approaches to study the sources of reactive species induced in water by the COST RF plasma jet[J]. Physical Chemistry Chemical Physics, 2018, 20(4): 2797-2808. doi: 10.1039/C7CP07616A [32] Waskoenig J, Niemi K, Knake N, et al. Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet[J]. Plasma Sources Science and Technology, 2010, 19: 045018. doi: 10.1088/0963-0252/19/4/045018 [33] Willems G, Golda J, Ellerweg D, et al. Corrigendum: characterization of the effluent of a He/O2 micro-scaled atmospheric pressure plasma jet by quantitative molecular beam mass spectrometry (2010 New J. Phys. 12 013021)[J]. New Journal of Physics, 2019, 21: 059501. doi: 10.1088/1367-2630/ab1dfc [34] Lu Xinpei, Naidis G V, Laroussi M, et al. Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects[J]. Physics Reports, 2016, 630: 1-84. doi: 10.1016/j.physrep.2016.03.003 [35] Schulz-von der Gathen V, Buck V, Gans T, et al. Optical diagnostics of micro discharge jets[J]. Contributions to Plasma Physics, 2007, 47(7): 510-519. doi: 10.1002/ctpp.200710066 [36] Maletić D, Puač N, Lazović S, et al. Detection of atomic oxygen and nitrogen created in a radio-frequency-driven micro-scale atmospheric pressure plasma jet using mass spectrometry[J]. Plasma Physics and Controlled Fusion, 2012, 54: 124046. doi: 10.1088/0741-3335/54/12/124046 [37] Sousa J S, Niemi K, Cox L J, et al. Cold atmospheric pressure plasma jets as sources of singlet delta oxygen for biomedical applications[J]. Journal of Applied Physics, 2011, 109: 123302. doi: 10.1063/1.3601347 [38] Khlyustova A, Labay C, Machala Z, et al. Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: a brief review[J]. Frontiers of Chemical Science and Engineering, 2019, 13(2): 238-252. doi: 10.1007/s11705-019-1801-8 [39] 芮立晨, 庞子宁, 李煊赫, 等. 液相等离子体及其在纳米材料制备中的应用[J]. 强激光与粒子束, 2022, 34:069001Rui Lichen, Pang Zining, Li Xuanhe, et al. Liquid plasmas and their applications in nanomaterial synthesis[J]. High Power Laser and Particle Beams, 2022, 34: 069001 [40] Benedikt J, Hefny M M, Shaw A, et al. The fate of plasma-generated oxygen atoms in aqueous solutions: non-equilibrium atmospheric pressure plasmas as an efficient source of atomic O(aq)[J]. Physical Chemistry Chemical Physics, 2018, 20(17): 12037-12042. doi: 10.1039/C8CP00197A [41] Schneider S, Lackmann J W, Narberhaus F, et al. Separation of VUV/UV photons and reactive particles in the effluent of a He/O2 atmospheric pressure plasma jet[J]. Journal of Physics D: Applied Physics, 2011, 44: 295201. doi: 10.1088/0022-3727/44/29/295201 [42] Edengeiser E, Lackmann J W, Bründermann E, et al. Synergistic effects of atmospheric pressure plasma-emitted components on DNA oligomers: a Raman spectroscopic study[J]. Journal of Biophotonics, 2015, 8(11/12): 918-924. [43] Lackmann J W, Schneider S, Narberhaus F, et al. Characterization of bacterial and bio-macromolecule damage by (V)UV and particle channels of X-microscale atmospheric pressure plasma jet(X-µAPPJ)[J]. 2011, 27: 87-88. [44] Lin Liangliang, Pho H Q, Zong Lu, et al. Microfluidic plasmas: novel technique for chemistry and chemical engineering[J]. Chemical Engineering Journal, 2021, 417: 129355. doi: 10.1016/j.cej.2021.129355 [45] Yamanishi Y, Sameshima S, Kuriki H, et al. Transportation of mono-dispersed micro-plasma bubble in microfluidic chip under atmospheric pressure[C]//Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems. 2013: 1795-1798. [46] Wengler J, Ognier S, Zhang Mengxue, et al. Microfluidic chips for plasma flow chemistry: application to controlled oxidative processes[J]. Reaction Chemistry & Engineering, 2018, 3(6): 930-941. [47] Abedelnour E, Ognier S, Zhang Mengxue, et al. Plasma flow chemistry for direct N-acylation of amines by esters[J]. Chemical Communications, 2022, 58(52): 7281-7284. doi: 10.1039/D2CC01940J [48] Winter J, Brandenburg R, Weltmann K D. Atmospheric pressure plasma jets: an overview of devices and new directions[J]. Plasma Sources Science and Technology, 2015, 24: 064001. doi: 10.1088/0963-0252/24/6/064001 [49] Reuter S, von Woedtke T, Weltmann K D. The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications[J]. Journal of Physics D: Applied Physics, 2018, 51: 233001. doi: 10.1088/1361-6463/aab3ad [50] Walsh J L, Iza F, Janson N B, et al. Three distinct modes in a cold atmospheric pressure plasma jet[J]. Journal of Physics D: Applied Physics, 2010, 43: 075201. doi: 10.1088/0022-3727/43/7/075201 [51] Li Guo, Li Heping, Wang Liyan, et al. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium[J]. Applied Physics Letters, 2008, 92: 221504. doi: 10.1063/1.2938692 [52] Reuter S, Tresp H, Wende K, et al. From RONS to ROS: tailoring plasma jet treatment of skin cells[J]. IEEE Transactions on Plasma Science, 2012, 40(11): 2986-2993. doi: 10.1109/TPS.2012.2207130 [53] Chen Guangliang, Zheng Xu, Lü Guohua, et al. Fabricating a reactive surface on the fibroin film by a room-temperature plasma jet array for biomolecule immobilization[J]. Chinese Physics B, 2012, 21: 105201. doi: 10.1088/1674-1056/21/10/105201 [54] Kedroňová E, Zajíčková L, Hegemann D, et al. Plasma enhanced CVD of organosilicon thin films on electrospun polymer nanofibers[J]. Plasma Processes and Polymers, 2015, 12(11): 1231-1243. doi: 10.1002/ppap.201400235 [55] Mariotti D, Sankaran R M. Microplasmas for nanomaterials synthesis[J]. Journal of Physics D: Applied Physics, 2010, 43: 323001. doi: 10.1088/0022-3727/43/32/323001 [56] Kim S J, Chung T H, Joh H M, et al. Characteristics of multiple plasma plumes and formation of bullets in an atmospheric- pressure plasma jet array[J]. IEEE Transactions on Plasma Science, 2015, 43(3): 753-759. doi: 10.1109/TPS.2015.2388548 [57] Kim J Y, Ballato J, Kim S O. Intense and energetic atmospheric pressure plasma jet arrays[J]. Plasma Processes and Polymers, 2012, 9(3): 253-260. doi: 10.1002/ppap.201100190 [58] Cao Z, Nie Q, Bayliss D L, et al. Spatially extended atmospheric plasma arrays[J]. Plasma Sources Science and Technology, 2010, 19: 025003. doi: 10.1088/0963-0252/19/2/025003 [59] Fang Zhi, Ruan Chen, Shao Tao, et al. Two discharge modes in an atmospheric pressure plasma jet array in argon[J]. Plasma Sources Science and Technology, 2016, 25: 01LT01. doi: 10.1088/0963-0252/25/1/01LT01 [60] Zhang Xianhui, Zhou Renwu, Zhou Rusen, et al. Treatment of ribonucleoside solution with atmospheric-pressure plasma[J]. Plasma Processes and Polymers, 2016, 13(4): 429-437. doi: 10.1002/ppap.201500088 [61] Cao Z, Walsh J L, Kong M G. Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment[J]. Applied Physics Letters, 2009, 94: 021501. doi: 10.1063/1.3069276 [62] Hu Jie, Wang Shuqi, Wang Lin, et al. Advances in paper-based point-of-care diagnostics[J]. Biosensors and Bioelectronics, 2014, 54: 585-597. doi: 10.1016/j.bios.2013.10.075 [63] Xing Siyuan, Harake R S, Pan Tingrui. Droplet-driven transports on superhydrophobic-patterned surface microfluidics[J]. Lab on a Chip, 2011, 11(21): 3642-3648. doi: 10.1039/c1lc20390h [64] Xia Yanyan, Si Jin, Li Zhiyang. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review[J]. Biosensors and Bioelectronics, 2016, 77: 774-789. doi: 10.1016/j.bios.2015.10.032 [65] Wu Sheting, Huang Chenyu, Weng C C, et al. Rapid prototyping of an open-surface microfluidic platform using wettability-patterned surfaces prepared by an atmospheric-pressure plasma jet[J]. ACS Omega, 2019, 4(15): 16292-16299. doi: 10.1021/acsomega.9b01317 [66] Peng Chengyun, Wu J S, Tsai C H D. Wettability distribution on the surface treated by plasma jet at different flow rates for microfluidic applications[J]. IEEE Transactions on Plasma Science, 2021, 49(1): 168-176. doi: 10.1109/TPS.2020.3012830 [67] Yu Yashen, Kuo L H, Wu M C, et al. A novel fabrication of PDMS chip using atmospheric pressure plasma jet: hydrophobicity modification and feasibility test[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. 2018: 278-283. [68] Wang Tao, Wang Xiaolin, Yang Bin, et al. Low temperature atmospheric microplasma jet array for uniform treatment of polymer surface for flexible electronics[J]. Journal of Micromechanics and Microengineering, 2017, 27: 075005. doi: 10.1088/1361-6439/aa703a [69] Liu Feng, Cai Meiling, Zhang Bo, et al. Hydrophobic surface modification of polymethyl methacrylate by two-dimensional plasma jet array at atmospheric pressure[J]. Journal of Vacuum Science & Technology A, 2018, 36: 061302. [70] Kim D H, Park C S, Shin B J, et al. Uniform area treatment for surface modification by simple atmospheric pressure plasma treatment technique[J]. IEEE Access, 2019, 7: 103727-103737. doi: 10.1109/ACCESS.2019.2930534 [71] Yang Fan, Deng Dehui, Pan Xiulian, et al. Understanding nano effects in catalysis[J]. National Science Review, 2015, 2(2): 183-201. doi: 10.1093/nsr/nwv024 [72] Darkwah W K, Ao Yanhui. Mini review on the structure and properties (photocatalysis), and preparation techniques of graphitic carbon nitride nano-based particle, and its applications[J]. Nanoscale Research Letters, 2018, 13: 388. doi: 10.1186/s11671-018-2702-3 [73] Yu Minrui, Huang Yu, Ballweg J, et al. Semiconductor nanomembrane tubes: three-dimensional confinement for controlled neurite outgrowth[J]. ACS Nano, 2011, 5(4): 2447-2457. doi: 10.1021/nn103618d [74] Comini E. Metal oxide nano-crystals for gas sensing[J]. Analytica Chimica Acta, 2006, 568(1/2): 28-40. [75] McNamara K, Tofail S A M. Nanoparticles in biomedical applications[J]. Advances in Physics: X, 2017, 2(1): 54-88. doi: 10.1080/23746149.2016.1254570 [76] Ananth A, Gandhi M S, Mok Y S. A dielectric barrier discharge (DBD) plasma reactor: an efficient tool to prepare novel RuO2 nanorods[J]. Journal of Physics D: Applied Physics, 2013, 46: 155202. doi: 10.1088/0022-3727/46/15/155202 [77] Kumar A, Lin P A, Xue A, et al. Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour[J]. Nature Communications, 2013, 4: 2618. doi: 10.1038/ncomms3618 [78] Sankaran R M, Holunga D, Flagan R C, et al. Synthesis of blue luminescent Si nanoparticles using atmospheric-pressure microdischarges[J]. Nano Letters, 2005, 5(3): 537-541. doi: 10.1021/nl0480060 [79] Lin Liangliang, Starostin S A, Wang Qi, et al. An atmospheric pressure microplasma process for continuous synthesis of titanium nitride nanoparticles[J]. Chemical Engineering Journal, 2017, 321: 447-457. doi: 10.1016/j.cej.2017.03.128 [80] Khatoon N, Yasin H M, Younus M, et al. Synthesis and spectroscopic characterization of gold nanoparticles via plasma-liquid interaction technique[J]. AIP Advances, 2018, 8: 015130. doi: 10.1063/1.5004470 [81] Yan Tingting, Zhong Xiaoxia, Rider A E, et al. Microplasma-chemical synthesis and tunable real-time plasmonic responses of alloyed AuxAg1−x nanoparticles[J]. Chemical Communications, 2014, 50(24): 3144-3147. doi: 10.1039/C3CC48846B [82] Mahmoudabadi Z D, Eslami E. One-step synthesis of CuO/TiO2 nanocomposite by atmospheric microplasma electrochemistry–its application as photoanode in dye-sensitized solar cell[J]. Journal of Alloys and Compounds, 2019, 793: 336-342. doi: 10.1016/j.jallcom.2019.04.185 [83] Li Xuanhe, Lin Liangliang, Chiang W H, et al. Microplasma synthesized gold nanoparticles for surface enhanced Raman spectroscopic detection of methylene blue[J]. Reaction Chemistry & Engineering, 2022, 7(2): 346-353. [84] Saito T, Mitsuya R, Ito Y, et al. Microstructured SiOx thin films deposited from hexamethyldisilazane and hexamethyldisiloxane using atmospheric pressure thermal microplasma jet[J]. Thin Solid Films, 2019, 669: 321-328. doi: 10.1016/j.tsf.2018.11.012 [85] Oshima F, Stauss S, Ishii C, et al. Plasma microreactor in supercritical xenon and its application to diamondoid synthesis[J]. Journal of Physics D: Applied Physics, 2012, 45: 402003. doi: 10.1088/0022-3727/45/40/402003 [86] Li Dai’en, Lin C H. Microfluidic chip for droplet-based AuNP synthesis with dielectric barrier discharge plasma and on-chip mercury ion detection[J]. RSC Advances, 2018, 8(29): 16139-16145. doi: 10.1039/C8RA02468E [87] Lin Liangliang, Li Xuanhe, Gao Haiyan, et al. Microfluidic plasma-based continuous and tunable synthesis of Ag–Au nanoparticles and their SERS properties[J]. Industrial & Engineering Chemistry Research, 2022, 61(5): 2183-2194. [88] Reuter R, Ellerweg D, von Keudell A, et al. Surface reactions as carbon removal mechanism in deposition of silicon dioxide films at atmospheric pressure[J]. Applied Physics Letters, 2011, 98: 111502. doi: 10.1063/1.3565965 [89] Benedikt J, Reuter R, Ellerweg D, et al. Deposition of SiOx films by means of atmospheric pressure microplasma jets[DB/OL]. arXiv preprint arXiv: 1105.2691, 2011. [90] Patinglag L. Development of a microfluidic atmospheric-pressure plasma reactor for water treatment[D]. Manchester, UK: Manchester Metropolitan University, 2019. [91] Sun P P, Araud E M, Huang Conghui, et al. Disintegration of simulated drinking water biofilms with arrays of microchannel plasma jets[J]. npj Biofilms and Microbiomes, 2018, 4: 24. doi: 10.1038/s41522-018-0063-4 [92] Jansen F. Effects of non-thermal atmospheric pressure plasma on human fibroblasts[D]. North Rhine Westphalia, Germany: Heinrich-Heine-Universitaet Duesseldorf, 2021. [93] Xu Zimu, Lan Yan, Ma Jie, et al. Applications of atmospheric pressure plasma in microbial inactivation and cancer therapy: a brief review[J]. Plasma Science and Technology, 2020, 22: 103001. doi: 10.1088/2058-6272/ab9ddd [94] Misra N N, Jo C. Applications of cold plasma technology for microbiological safety in meat industry[J]. Trends in Food Science & Technology, 2017, 64: 74-86. [95] Deng Lizhen, Mujumdar A S, Pan Zhongli, et al. Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(15): 2481-2508. doi: 10.1080/10408398.2019.1649633 [96] Neretti G, Tampieri F, Borghi C A, et al. Characterization of a plasma source for biomedical applications by electrical, optical, and chemical measurements[J]. Plasma Processes and Polymers, 2018, 15: 1800105. doi: 10.1002/ppap.201800105 [97] Petrović Z L, Puač N, Lazović S, et al. Biomedical applications and diagnostics of atmospheric pressure plasma[J]. Journal of Physics: Conference Series, 2012, 356: 012001. doi: 10.1088/1742-6596/356/1/012001