Study of electron beam focusing performance of ferromagnetic material loaded compound pipe shell
-
摘要: 大功率行波管通常利用复合管壳提升高频系统的集成度和散热特性。宽带行波管采用复合管壳高频制造工艺时,由于加载翼片含有铁磁性材料(纯铁)使得聚焦系统的横向磁场分量变大,径向和角向磁场分量呈非均匀性,电子注聚焦困难。本文研究了周期永磁聚焦系统横向磁场产生的原因并建立理论模型,并对磁场分量和其对电子注形态的影响进行了仿真,仿真结果与理论计算结果一致。根据横向磁场分布模型对加载翼片的形状和数量进行优化仿真,结果表明9片齿形加载翼片方案可在保持慢波电路参数的同时,降低聚焦系统的横向磁场分量,改善电子注聚焦效果。Abstract: High power traveling wave tubes (TWTs) usually use compound pipe shells to enhance the integration and heat dissipation characteristics of high frequency system. When broadband TWT adopts the compound pipe shell high frequency manufacturing process, the vane load contains ferromagnetic material (pure iron), which makes the transverse magnetic field component of the focusing system become larger, radial and angular magnetic field components being non-homogeneous, resulting in the difficulty of electron beam focusing. This paper studies the causes of transverse magnetic field generation in periodic permanent magnet (PPM) focusing system and establishes theoretical model and simulates the transverse magnetic field component’s effect on the morphology of electron beam. The simulation results are consistent with the theoretical model. The optimized combination of shape and number of vanes based on the theoretical model shows that the 9 tooth-shaped loaded vanes can maintain slow-wave circuit parameters while reducing transverse magnetic field component of the focusing system, improving the focusing performance of electron beam.
-
表 1 聚焦系统结构尺寸参数
Table 1. Focusing system structure parameters
inner radius/mm outer radius/mm thickness/mm pole piece 1.9 6 1 magnet 2.8 6.5 2.6 -
[1] VED IPP. Rethinking what we know about vacuum electronic devices[J]. The Journal of Electronic Defense, 2019, 42(2): 1-4. [2] Wong P, Zhang Peng, Luginsland J. Recent theory of traveling-wave tubes: a tutorial-review[J]. Plasma Research Express, 2020, 2: 023001. doi: 10.1088/2516-1067/ab9730 [3] 王斌, 王风岩, 周旭, 等. 微波功率行波管及模块的应用发展趋势[J]. 真空电子技术, 2019(2):1-7 doi: 10.16540/j.cnki.cn11-2485/tn.2019.02.01Wang Bin, Wang Fengyan, Zhou Xu, et al. Application and development trend of TWTs and MPMs[J]. Vacuum Electronics, 2019(2): 1-7 doi: 10.16540/j.cnki.cn11-2485/tn.2019.02.01 [4] Luo Jirun, Feng Jinjun, Gong Yubin. A review of microwave vacuum devices in China: theory and device development including high-power klystrons, spaceborne TWTs, and gyro-TWTs[J]. IEEE Microwave Magazine, 2021, 22(4): 18-33. doi: 10.1109/MMM.2020.3047747 [5] 廖复疆. 真空电子技术—信息装备的心脏[M]. 北京: 国防工业出版社, 1999: 51-55Liao Fujiang. Vacuum electronic technology-heart of information equipment[M]. Beijing: National Defense Industry Press, 1999: 51-55 [6] 李海波, 孟晓君, 魏义学, 等. 复合管壳在大功率连续波行波管中的应用[J]. 真空电子技术, 2014(4):10-11 doi: 10.3969/j.issn.1002-8935.2014.04.003Li Haibo, Meng Xiaojun, Wei Yixue, et al. The Application of compound pipe shell in high power continuous wave TWT[J]. Vacuum Electronics, 2014(4): 10-11 doi: 10.3969/j.issn.1002-8935.2014.04.003 [7] 廖平, 杨中海, 雷文强, 等. 周期永磁聚焦电子注性能计算机模拟[J]. 强激光与粒子束, 2004, 16(1):68-72Liao Ping, Yang Zhonghai, Lei Wenqiang, et al. Computer simulation of electron beam characteristics focused by periodic permanent magnets[J]. High Power Laser and Particle Beams, 2004, 16(1): 68-72 [8] 程玲莉, 王林梅, 王敬东, 等. 四注行波管周期永磁聚焦系统的优化设计[J]. 强激光与粒子束, 2019, 31:113005 doi: 10.11884/HPLPB201931.190153Cheng Lingli, Wang Linmei, Wang Jingdong, et al. Optimal design of periodic permanent magnetic focusing system for four-beam traveling wave tubes[J]. High Power Laser and Particle Beams, 2019, 31: 113005 doi: 10.11884/HPLPB201931.190153 [9] 黎泽伦, 孟杰, 黄友均, 等. 多注行波管PPM聚焦系统横向磁场研究[J]. 合肥工业大学学报(自然科学版), 2014, 37(1):73-77Li Zelun, Meng Jie, Huang Youjun, et al. Study of transverse magnetic fields of multi-beam PPM focusing system[J]. Journal of Hefei University of Technology, 2014, 37(1): 73-77 [10] Gilmour A S Jr. Principles of traveling wave tubes[M]. Boston: Artech House, 1994. [11] Paoloni C, Gamzina D, Letizia R, et al. Millimeter wave traveling wave tubes for the 21st Century[J]. Journal of Electromagnetic Waves and Applications, 2021, 35(5): 567-603. doi: 10.1080/09205071.2020.1848643 [12] 余金清, 胡玉禄, 李斌. 行波管中聚焦磁场对互作用影响的研究[J]. 真空电子技术, 2011(1):21-25 doi: 10.3969/j.issn.1002-8935.2011.01.006Yu Jinqing, Hu Yulu, Li Bin. Research of the focusing magnetic’s impact on the interaction in TWT[J]. Vacuum Electronics, 2011(1): 21-25 doi: 10.3969/j.issn.1002-8935.2011.01.006 [13] 郭佶玙. 行波管注波互作用高效率研究[D]. 成都: 电子科技大学, 2014Guo Jiyu. Study of beam-wave interaction with high efficiency in TWTs[D]. Chengdu: University of Electronic Science and Technology of China, 2014 [14] 赵新刚, 李庆绩, 赵士录. 几种典型翼片加载螺旋线行波管色散及返波特性研究[J]. 真空电子技术, 2006(6):5-8 doi: 10.3969/j.issn.1002-8935.2006.06.002Zhao Xingang, Li Qingji, Zhao Shilu. Investigation of characters of dispersion and backward wave in helix TWTs with several typical vane load[J]. Vacuum Electronics, 2006(6): 5-8 doi: 10.3969/j.issn.1002-8935.2006.06.002 [15] 李泉凤. 电磁场数值计算与电磁铁设计[M]. 北京: 清华大学出版社, 2002Li Quanfeng. Numerical calculation of electromagnetic field and electromagnet design[M]. Beijing: Tsinghua University Press, 2002 [16] Carlsten B E, Earley L M, Krawczyk F L, et al. Stability of an emittance-dominated sheet-electron beam in planar wiggler and periodic permanent magnet structures with natural focusing[J]. Physical Review Special Topics-Accelerators and Beams, 2005, 8: 062001. doi: 10.1103/PhysRevSTAB.8.062001 [17] Sharma R K, Choudhury A R, Arya S, et al. Design and experimental evaluation of dual-anode electron gun and PPM focusing of helix TWT[J]. IEEE Transactions on Electron Devices, 2015, 62(10): 3419-3425. doi: 10.1109/TED.2015.2470118 [18] Kumar M, Geetha M K, Kumar M V. Design of magnetic focusing system for a compact Ka band helix TWT[J]. Defence Science Journal, 2021, 71(3): 329-331. doi: 10.14429/dsj.71.16810