Measurement and simulation of terrestrial atmospheric neutron spectrum in typical regions of China
-
摘要: 基于多球能谱仪开展了广州、兰州和拉萨等地区的大气中子能谱和通量测量,获取了大气中子能谱的典型特征。测量结果表明:不同地区的大气中子通量受海拔高度的影响明显,地面大气中子通量随着海拔的增加而增加。此外,基于蒙特卡罗仿真工具也可以模拟初级宇宙射线粒子在地球大气层中的核反应过程,从而计算获取大气中子能谱。大气中子能谱测量数据与仿真数据吻合良好。Abstract: Atmospheric neutrons can cause the single event effect (SEE) of integrated circuits, resulting in data loss or functional interrupt. The SEE failure rate caused by atmospheric neutrons depends on its flux, thus obtaining the atmospheric neutron flux is the premise of SEE failure rate assessment. In this paper, the atmospheric neutron energy spectra and fluxes in Guangzhou, Lanzhou and Lhasa are measured using the Bonner sphere spectrometers (BSS). Typical characteristics of atmospheric neutron spectrum are obtained. The measured results show that the atmospheric neutron flux in different areas is affected by the altitude, and the terrestrial atmospheric neutron flux increases with the altitude. In addition, the nuclear reaction process of primary cosmic ray particles in the earth’s atmosphere can also be simulated based on the Monte Carlo simulation tools, so as to calculate the atmospheric neutron spectrum. It shows that the measured data of atmospheric neutron spectra are in good agreement with the simulation data. These data can be used in quantitative evaluation of atmospheric neutron-induced SEE of integrated circuits.
-
表 1 大气中子能谱测量点信息
Table 1. Location information of atmospheric neutron spectrum measurement
measurement location longitude latitude altitude/m Guangzhou 113°40′55″E 23°16′38″N 42 Lanzhou 103°15′36″E 35°50′40″N 1780 Lhasa 91°7′23″E 29°39′39″N 3634 Yangbajing 90°31′32″E 30°5′56″N 4277 表 2 级联反应过程中不同粒子与大气层原子发生非弹性相互作用的概率
Table 2. Probability of inelastic interaction between different particles and atmospheric atoms in cascade reaction process
particle types probability/% neutron 61.0 proton 18.6 4-helium 18.3 heavy ion 1.4 muon− 0.2 pion+,pion− 0.2 表 3 非弹性相互作用中生成次级粒子的概率
Table 3. Generation probability of secondary particles in inelastic interactions
particle types probability/% neutron 31.6 proton 25.2 4-helium 19.2 photon 7.8 pion+,pion− 6.0 deuteron,triton 4.6 -
[1] Ziegler J F. Terrestrial cosmic rays[J]. IBM Journal of Research and Development, 1996, 40(1): 19-39. doi: 10.1147/rd.401.0019 [2] Ziegler J F, Lanford W A. Effect of cosmic rays on computer memories[J]. Science, 1979, 206(4420): 776-788. doi: 10.1126/science.206.4420.776 [3] Nakamura T, Baba M, Ibe E, et al. Terrestrial neutron-induced soft errors in advanced memory devices[M]. Hackensack: World Scientific, 2008. [4] Cheminet A, Lacoste V, Hubert G, et al. Experimental measurements of the cosmic-ray induced neutron spectra at various mountain altitudes with HERMEIS[J]. IEEE Transactions on Nuclear Science, 2012, 59(4): 1722-1730. doi: 10.1109/TNS.2012.2201500 [5] Gordon M S, Goldhagen P, Rodbell K P, et al. Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground[J]. IEEE Transactions on Nuclear Science, 2004, 51(6): 3427-3434. doi: 10.1109/TNS.2004.839134 [6] 吴建华, 徐勇军, 刘森林, 等. 西藏地区天然中子能谱测量[J]. 原子能科学技术, 2014, 48(2):219-222 doi: 10.7538/yzk.2014.48.02.0219Wu Jianhua, Xu Yongjun, Liu Senlin, et al. Spectrum measurement of natural neutron in Tibet[J]. Atomic Energy Science and Technology, 2014, 48(2): 219-222 doi: 10.7538/yzk.2014.48.02.0219 [7] Hu Z M, Ge L J, Sun J Q, et al. Measurements of cosmic ray induced background neutrons near the ground using a Bonner sphere spectrometer[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 940: 78-82. [8] Kole M, Pearce M, Salinas M M. A model of the cosmic ray induced atmospheric neutron environment[J]. Astroparticle Physics, 2015, 62: 230-240. doi: 10.1016/j.astropartphys.2014.10.002 [9] Barth J L, Dyer C S, Stassinopoulos E G. Space, atmospheric, and terrestrial radiation environments[J]. IEEE Transactions on Nuclear Science, 2003, 50(3): 466-482. doi: 10.1109/TNS.2003.813131 [10] Normand E, Baker T J. Altitude and latitude variations in avionics SEU and atmospheric neutron flux[J]. IEEE Transactions on Nuclear Science, 1993, 40(6): 1484-1490. doi: 10.1109/23.273514 [11] Fang Yipin, Oates A S. Thermal neutron-induced soft errors in advanced memory and logic devices[J]. IEEE Transactions on Device and Materials Reliability, 2014, 14(1): 583-586. doi: 10.1109/TDMR.2013.2287699 [12] Wen Shijie, Wong R, Romain M, et al. Thermal neutron soft error rate for SRAMS in the 90nm–45nm technology range[C]//Proceedings of 2010 IEEE International Reliability Physics Symposium. 2010: 1036-1039. [13] Sato T. Analytical model for estimating the zenith angle dependence of terrestrial cosmic ray fluxes[J]. PLoS One, 2016, 11: e0160390. doi: 10.1371/journal.pone.0160390 [14] Fasso A, Ferrari A, Ranft J, et al. FLUKA: present status and future developments[C]//Proceedings 4th International Conference on Calorimetry in High-energy Physics. 1993: 493-502. [15] Infantino A, Blackmore E W, Brugger M, et al. FLUKA Monte Carlo assessment of the terrestrial muon flux at low energies and comparison against experimental measurements[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 838: 109-116. [16] Sato T, Niita K. Analytical functions to predict cosmic-ray neutron spectra in the atmosphere[J]. Radiation Research, 2006, 166(3): 544-555. doi: 10.1667/RR0610.1 [17] JESD89B, Measurement and reporting of alpha particle and terrestrial cosmic ray induced soft errors in semiconductor devices[S]. [18] Ziegler J F. Terrestrial cosmic ray intensities[J]. IBM Journal of Research and Development, 1998, 42(1): 117-140. doi: 10.1147/rd.421.0117