留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国内典型地区地面大气中子能谱测量与仿真

彭超 雷志锋 张战刚 杨少华 来萍 路国光

彭超, 雷志锋, 张战刚, 等. 国内典型地区地面大气中子能谱测量与仿真[J]. 强激光与粒子束, 2023, 35: 059001. doi: 10.11884/HPLPB202335.220353
引用本文: 彭超, 雷志锋, 张战刚, 等. 国内典型地区地面大气中子能谱测量与仿真[J]. 强激光与粒子束, 2023, 35: 059001. doi: 10.11884/HPLPB202335.220353
Peng Chao, Lei Zhifeng, Zhang Zhangang, et al. Measurement and simulation of terrestrial atmospheric neutron spectrum in typical regions of China[J]. High Power Laser and Particle Beams, 2023, 35: 059001. doi: 10.11884/HPLPB202335.220353
Citation: Peng Chao, Lei Zhifeng, Zhang Zhangang, et al. Measurement and simulation of terrestrial atmospheric neutron spectrum in typical regions of China[J]. High Power Laser and Particle Beams, 2023, 35: 059001. doi: 10.11884/HPLPB202335.220353

国内典型地区地面大气中子能谱测量与仿真

doi: 10.11884/HPLPB202335.220353
基金项目: 广东省基础与应用基础研究基金项目(2021B1515120043); 广州市科技计划项目(202102021201)
详细信息
    作者简介:

    彭 超,pengchaoceprei@qq.com

  • 中图分类号: TL99

Measurement and simulation of terrestrial atmospheric neutron spectrum in typical regions of China

  • 摘要: 基于多球能谱仪开展了广州、兰州和拉萨等地区的大气中子能谱和通量测量,获取了大气中子能谱的典型特征。测量结果表明:不同地区的大气中子通量受海拔高度的影响明显,地面大气中子通量随着海拔的增加而增加。此外,基于蒙特卡罗仿真工具也可以模拟初级宇宙射线粒子在地球大气层中的核反应过程,从而计算获取大气中子能谱。大气中子能谱测量数据与仿真数据吻合良好。
  • 图  1  Bonner多球谱仪示意图

    Figure  1.  Schematic diagram of Bonner sphere spectrometer

    图  2  大气中子能谱现场测试图

    Figure  2.  Field measurement of atmospheric neutron spectrum

    图  3  不同地区大气中子能谱测量结果

    Figure  3.  Measured atmospheric neutron spectra at different locations

    图  4  基于EXPACS模型计算得到的实测地区的大气中子差分通量随能量的变化

    Figure  4.  Atmospheric neutron differential flux as a function of energy at different measurement sites calculated by EXPACS model

    图  5  大气中子能谱计算结果与测量数据对比

    Figure  5.  Comparison between calculated results and measured data of atmospheric neutron spectrum

    图  6  蒙特卡罗输运仿真中的大气层环境建模

    Figure  6.  Atmospheric environment modeling in Monte Carlo transport simulations

    图  7  蒙特卡罗仿真中入射的初级银河宇宙射线粒子谱

    Figure  7.  Primary galaxy cosmic ray particle spectra used in Monte Carlo simulations

    图  8  蒙特卡罗仿真得到不同海拔处的大气中子能谱

    Figure  8.  Atmospheric neutron spectra at different altitudes obtained by Monte Carlo simulations

    图  9  实地测量、EXPACS模型计算以及蒙特卡罗仿真得到的广州地区大气中子能谱对比

    Figure  9.  Comparison of atmospheric neutron spectra obtained from field measurement, EXPACS model calculation and Monte Carlo simulation in Guangzhou

    表  1  大气中子能谱测量点信息

    Table  1.   Location information of atmospheric neutron spectrum measurement

    measurement location longitude latitude altitude/m
    Guangzhou 113°40′55″E 23°16′38″N 42
    Lanzhou 103°15′36″E 35°50′40″N 1780
    Lhasa 91°7′23″E 29°39′39″N 3634
    Yangbajing 90°31′32″E 30°5′56″N 4277
    下载: 导出CSV

    表  2  级联反应过程中不同粒子与大气层原子发生非弹性相互作用的概率

    Table  2.   Probability of inelastic interaction between different particles and atmospheric atoms in cascade reaction process

    particle types probability/%
    neutron 61.0
    proton 18.6
    4-helium 18.3
    heavy ion 1.4
    muon 0.2
    pion+,pion 0.2
    下载: 导出CSV

    表  3  非弹性相互作用中生成次级粒子的概率

    Table  3.   Generation probability of secondary particles in inelastic interactions

    particle types probability/%
    neutron 31.6
    proton 25.2
    4-helium 19.2
    photon 7.8
    pion+,pion 6.0
    deuteron,triton 4.6
    下载: 导出CSV
  • [1] Ziegler J F. Terrestrial cosmic rays[J]. IBM Journal of Research and Development, 1996, 40(1): 19-39. doi: 10.1147/rd.401.0019
    [2] Ziegler J F, Lanford W A. Effect of cosmic rays on computer memories[J]. Science, 1979, 206(4420): 776-788. doi: 10.1126/science.206.4420.776
    [3] Nakamura T, Baba M, Ibe E, et al. Terrestrial neutron-induced soft errors in advanced memory devices[M]. Hackensack: World Scientific, 2008.
    [4] Cheminet A, Lacoste V, Hubert G, et al. Experimental measurements of the cosmic-ray induced neutron spectra at various mountain altitudes with HERMEIS[J]. IEEE Transactions on Nuclear Science, 2012, 59(4): 1722-1730. doi: 10.1109/TNS.2012.2201500
    [5] Gordon M S, Goldhagen P, Rodbell K P, et al. Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground[J]. IEEE Transactions on Nuclear Science, 2004, 51(6): 3427-3434. doi: 10.1109/TNS.2004.839134
    [6] 吴建华, 徐勇军, 刘森林, 等. 西藏地区天然中子能谱测量[J]. 原子能科学技术, 2014, 48(2):219-222 doi: 10.7538/yzk.2014.48.02.0219

    Wu Jianhua, Xu Yongjun, Liu Senlin, et al. Spectrum measurement of natural neutron in Tibet[J]. Atomic Energy Science and Technology, 2014, 48(2): 219-222 doi: 10.7538/yzk.2014.48.02.0219
    [7] Hu Z M, Ge L J, Sun J Q, et al. Measurements of cosmic ray induced background neutrons near the ground using a Bonner sphere spectrometer[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 940: 78-82.
    [8] Kole M, Pearce M, Salinas M M. A model of the cosmic ray induced atmospheric neutron environment[J]. Astroparticle Physics, 2015, 62: 230-240. doi: 10.1016/j.astropartphys.2014.10.002
    [9] Barth J L, Dyer C S, Stassinopoulos E G. Space, atmospheric, and terrestrial radiation environments[J]. IEEE Transactions on Nuclear Science, 2003, 50(3): 466-482. doi: 10.1109/TNS.2003.813131
    [10] Normand E, Baker T J. Altitude and latitude variations in avionics SEU and atmospheric neutron flux[J]. IEEE Transactions on Nuclear Science, 1993, 40(6): 1484-1490. doi: 10.1109/23.273514
    [11] Fang Yipin, Oates A S. Thermal neutron-induced soft errors in advanced memory and logic devices[J]. IEEE Transactions on Device and Materials Reliability, 2014, 14(1): 583-586. doi: 10.1109/TDMR.2013.2287699
    [12] Wen Shijie, Wong R, Romain M, et al. Thermal neutron soft error rate for SRAMS in the 90nm–45nm technology range[C]//Proceedings of 2010 IEEE International Reliability Physics Symposium. 2010: 1036-1039.
    [13] Sato T. Analytical model for estimating the zenith angle dependence of terrestrial cosmic ray fluxes[J]. PLoS One, 2016, 11: e0160390. doi: 10.1371/journal.pone.0160390
    [14] Fasso A, Ferrari A, Ranft J, et al. FLUKA: present status and future developments[C]//Proceedings 4th International Conference on Calorimetry in High-energy Physics. 1993: 493-502.
    [15] Infantino A, Blackmore E W, Brugger M, et al. FLUKA Monte Carlo assessment of the terrestrial muon flux at low energies and comparison against experimental measurements[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 838: 109-116.
    [16] Sato T, Niita K. Analytical functions to predict cosmic-ray neutron spectra in the atmosphere[J]. Radiation Research, 2006, 166(3): 544-555. doi: 10.1667/RR0610.1
    [17] JESD89B, Measurement and reporting of alpha particle and terrestrial cosmic ray induced soft errors in semiconductor devices[S].
    [18] Ziegler J F. Terrestrial cosmic ray intensities[J]. IBM Journal of Research and Development, 1998, 42(1): 117-140. doi: 10.1147/rd.421.0117
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  876
  • HTML全文浏览量:  399
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-25
  • 修回日期:  2023-02-10
  • 录用日期:  2023-02-10
  • 网络出版日期:  2023-02-21
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回