Design and magnetic field analysis of double-layer heating plate for fiber optic gyroscope
-
摘要: 在复杂电磁环境中,磁场干扰是光纤陀螺仪产生误差的主要原因之一。为了减小光纤陀螺仪台体中加热片产生的磁场对陀螺仪精度的影响,设计了双层加热片结构,并采用有限元方法对单、双层加热片上方光纤环位置处的磁场进行对比分析,根据分析结果计算磁场对光纤陀螺仪精度的影响,结果表明:两种加热片在光纤环位置处磁场均为非均匀磁场,光纤环距离加热片较近处的磁通密度呈现环状分布,距离加热片较远处的磁通密度呈中心强周围弱分布;随着光纤环平面与加热片间的距离增加,光纤环平面上单层加热片的磁通密度最大值约为双层加热片的30至122倍;双层加热片磁场对光纤陀螺仪磁敏感相位误差随磁场方向与光纤环之间的角度呈现倾斜正弦变化;单层和双层加热片在光纤环下表面处产生的磁场磁敏感相位误差分别为1.299×10−10 rad和5.572×10−12 rad。以上结果证明了双层加热片磁场对光纤陀螺仪的干扰远小于单层加热片,双层加热片产生的电磁干扰更小,更有利于提升光纤陀螺仪的精度。Abstract: In a complex electromagnetic environment, magnetic field interference is one of the main reasons for the error of fiber optic gyroscopes. To reduce the influence of the magnetic field generated by the heating plate in the body of the fiber optic gyroscope on the accuracy of the gyroscope, a double-layer heating plate structure is designed, and a comparative analysis of the magnetic field at the fiber optic ring position above the single-layer and double-layer heating plates is carried out by using the finite element method, and the influence of the magnetic field on the accuracy of the fiber optic gyroscope is calculated based on the analysis results. The results show that the magnetic field of both heating plates is non-uniform at the location of the fiber optic ring. The magnetic flux density near the fiber optic ring to the heating plate has a ring-like distribution, while the magnetic flux density away from the heating plate has a strong center and weak center distribution. With the increase in the distance between the fiber ring plane and the heating plate, the maximum magnetic flux density of the single-layer heating plate on the fiber ring plane is about 30 to 122 times that of the double-layer heating plate. The magnetic sensitivity phase error of the fiber optic gyroscope varies sinusoidally with the direction of the magnetic field and the angle between the fiber ring. The phase errors of the magnetic field on the lower surface of the fiber ring are 1.299×10−10 rad and 5.572×10−12 rad, respectively. The above results prove that the magnetic field of the double-layer heating plate interferes with the fiber-optic gyroscope much less than that of the single-layer heating plate and that the electromagnetic interference generated by the double-layer heating plate is much smaller, which is more conducive to improving the accuracy of the fiber-optic gyroscope.
-
表 1 单、双层加热片磁场在空间平面上最大磁通密度值
Table 1. Maximum magnetic flux density value of single and double heating pad magnetic field in the spatial plane
n L/mm maximum value of magnetic flux density
of single-layer heating pad/Tmaximum value of magnetic flux density
of double-layer heating pad/Tmaximum flux density
multiplier1 8.1 8.063×10−6 2.691×10−7 30 2 10.6 6.235×10−6 1.312×10−7 48 3 13.1 5.007×10−6 9.560×10−8 52 4 15.6 4.259×10−6 6.630×10−8 64 5 18.1 3.779×10−6 4.610×10−8 82 6 20.6 3.328×10−6 3.960×10−8 84 7 23.1 3.002×10−6 3.070×10−8 98 8 25.6 2.741×10−6 2.610×10−8 105 9 28.1 2.490×10−6 2.350×10−8 106 10 30.6 2.259×10−6 2.080×10−8 109 11 33.1 2.063×10−6 1.690×10−8 122 表 2 加热片磁场对光纤陀螺仪磁敏感相位误差计算参数
Table 2. Calculation parameters of phase error of fiber optic gyroscope sensitivity to heating plate magnetic field
heating plate n L/mm R/m θ′0/(°) B′0/T single-layer 1 8.100 −0.024 −176.251 8.063×10−6 6 20.600 −0.041 −17.341 3.328×10−6 11 33.100 −0.053 −171.174 2.063×10−6 double-layer 1 8.100 −0.020 9.356 2.691×10−7 6 20.600 −0.027 −69.422 3.960×10−8 11 33.100 −0.038 −160.012 1.690×10−8 表 3 加热片上表面不同距离磁场对陀螺仪产生的磁敏相位误差最大值
Table 3. Maximum phase errors of the gyroscope induced by the magnetic field at different distances on the surface of the heating plate
n L/mm phase error of single layer heating plate/rad phase error of double layer heater/rad 1 8.1 1.299×10−10 5.572×10−12 6 20.6 1.925×10−11 5.343×10−13 11 33.1 3.232×10−12 1.193×10−13 -
[1] 张桂才. 光纤陀螺原理与技术[M]. 北京: 国防工业出版社, 2008Zhang Guicai. The principles and technologies of fiber-optic gyroscope[M]. Beijing: National Defense Industry Press, 2008 [2] Nayak J. Fiber-optic gyroscopes: from design to production [Invited][J]. Applied Optics, 2011, 50(25): E152-E161. doi: 10.1364/AO.50.00E152 [3] 王婷婷, 王晓伟, 金靖, 等. 空间用光纤陀螺辐射诱导磁场误差变化机理研究[J]. 半导体光电, 2022, 43(4):689-696Wang Tingting, Wang Xiaowei, Jin Jing, et al. Study on the variation mechanism of radiation-induced magnetic field error in space fiber optic gyroscope[J]. Semiconductor Optoelectronics, 2022, 43(4): 689-696 [4] 李家韡, 刘德文, 陈华江, 等. 弹载微小型化三轴一体光纤陀螺组合设计[J]. 飞控与探测, 2022, 5(3):78-83Li Jiawei, Liu Dewen, Chen Huajiang, et al. Design of miniature three-axis integrated fiber optic gyroscope for guided missile[J]. Flight Control and Detection, 2022, 5(3): 78-83 [5] 赵坤, 胡小毛, 刘伯晗. 舰船长航时光纤陀螺惯导系统技术及未来发展[J]. 中国惯性技术学报, 2022, 30(3):281-287Zhao Kun, Hu Xiaomao, Liu Bohan. Long-endurance fiber optic gyroscope INS for ships and its development trends[J]. Journal of Chinese Inertial Technology, 2022, 30(3): 281-287 [6] 张旭, 周鹏辉. 光纤陀螺仪及其在航空领域的应用前景[J]. 黑龙江科技信息, 2012(17):79Zhang Xu, Zhou Penghui. Fiber optic gyroscope and its Application prospect in aviation field[J]. Heilongjiang Science and Technology Information, 2012(17): 79 [7] 周闻青, 费宇明, 洪桂杰, 等. 高精度光纤陀螺零位误差的磁温特性研究[J]. 应用光学, 2020, 41(1):220-227 doi: 10.5768/JAO202041.0108001Zhou Wenqing, Fei Yuming, Hong Guijie, et al. Research on magnetic temperature characteristics of zero error on high precision fiber-optic gyro[J]. Journal of Applied Optics, 2020, 41(1): 220-227 doi: 10.5768/JAO202041.0108001 [8] 毛彩虹, 宫兆涛, 牟旭东, 等. 有限差分法在光纤陀螺温度场研究中的应用[J]. 压电与声光, 2003, 25(2):98-101Mao Caihong, Gong Zhaotao, Mou Xudong, et al. Finite difference method for temperature field in fiber optical gyroscope[J]. Piezoelectrics & Acoustooptics, 2003, 25(2): 98-101 [9] 冯丽爽, 南书志, 金靖. 光纤陀螺温度建模及补偿技术研究[J]. 宇航学报, 2006, 27(5):939-941,1049Feng Lishuang, Nan Shuzhi, Jin Jing. Research on modeling and compensation technology for temperature errors of FOG[J]. Journal of Astronautics, 2006, 27(5): 939-941,1049 [10] 白俊卿, 张科, 耿为盟. 光纤陀螺惯导系统温度建模与补偿技术研究[J]. 压电与声光, 2013, 35(2):201-203Bai Junqing, Zhang Ke, Geng Weimeng. The research for FOG inertial navigation system of modeling and temperature compensation technology[J]. Piezoelectrics & Acoustooptics, 2013, 35(2): 201-203 [11] 陈一平, 梁璀, 张登伟, 等. 光纤陀螺磁温耦合效应[J]. 光子学报, 2018, 47:0506005 doi: 10.3788/gzxb20184705.0506005Chen Yiping, Liang Cui, Zhang Dengwei, et al. Magnetic-temperature coupling effect of a fiber optic gyroscope[J]. Acta Photonica Sinica, 2018, 47: 0506005 doi: 10.3788/gzxb20184705.0506005 [12] 谌尧周, 王夏霄, 高洋洋, 等. 地磁场对高精度光纤陀螺仪零偏的影响机理研究[J]. 电子测量技术, 2016, 39(1):147-150Chen Yaozhou, Wang Xiaxiao, Gao Yangyang, et al. Research on the influence mechanism of earth's magnetic field on zero bias of high precision FOG[J]. Electronic Measurement Technology, 2016, 39(1): 147-150 [13] 鲁军, 殷建玲, 刘磊, 等. 光纤陀螺电路辐射磁场的测试[J]. 无线电工程, 2020, 50(8):678-682 doi: 10.3969/j.issn.1003-3106.2020.08.012Lu Jun, Yin Jianling, Liu Lei, et al. Testing on radiation magnetic field of FOG circuit[J]. Radio Engineering, 2020, 50(8): 678-682 doi: 10.3969/j.issn.1003-3106.2020.08.012 [14] 肖程, 刘军, 殷建玲, 等. 光纤陀螺在球面非均匀磁场中的磁敏感性研究[J]. 光学仪器, 2014, 36(5):426-431Xiao Cheng, Liu Jun, Yin Jianling, et al. Research on magnetic sensibility of fiber optic gyroscope in the spherical inhomogeneous magnetic field[J]. Optical Instruments, 2014, 36(5): 426-431 [15] 谭曦, 刘军, 殷建玲, 等. 光纤陀螺在直流及交变磁场中的磁敏感性研究[J]. 中国激光, 2012, 39:0905006 doi: 10.3788/CJL201239.0905006Tan Xi, Liu Jun, Yin Jianling, et al. Magnetic sensitivity studies of fiber optic gyroscope in direct current and alternating current magnetic fields[J]. Chinese Journal of Lasers, 2012, 39: 0905006 doi: 10.3788/CJL201239.0905006 [16] Erlichson H. The experiments of Biot and Savart concerning the force exerted by a current on a magnetic needle[J]. Am J Phys, 1998, 66(5): 385-391. doi: 10.1119/1.18878 [17] 张登伟, 牟旭东, 舒晓武, 等. 单模光纤环轴向磁场问题的理论研究[J]. 传感技术学报, 2005, 18(3):672-675Zhang Dengwei, Mou Xudong, Shu Xiaowu, et al. Theory study on axial magnetic field in single-mode fiber loop[J]. Chinese Journal of Sensors and Actuators, 2005, 18(3): 672-675 [18] 王夏霄, 秦祎, 于佳, 等. 光纤陀螺保偏光纤环几何轴向磁敏感性理论研究[J]. 激光与光电子学进展, 2014, 51(12):100-105Wang Xiaxiao, Qin Yi, Yu Jia, et al. Theoretical study on geometric axial magnetic sensitivity of polarizing fiber ring of fiber optic gyroscope[J]. Laser & Optoelectronics Progress, 2014, 51(12): 100-105 [19] 王夏霄, 冯志芳, 秦祎, 等. 光纤陀螺光纤环轴向磁敏感性研究[J]. 中国激光, 2015, 42:0805005 doi: 10.3788/CJL201542.0805005Wang Xiaxiao, Feng Zhifang, Qin Yi, et al. Study on the axial magnetic field sensitivity in optical fiber coil of fiber optic gyroscope[J]. Chinese Journal of Lasers, 2015, 42: 0805005 doi: 10.3788/CJL201542.0805005 [20] 王夏霄, 宋凝芳, 张春熹, 等. 光纤陀螺磁敏感性的试验研究[J]. 北京航空航天大学学报, 2005, 31(10):1116-1120Wang Xiaxiao, Song Ningfang, Zhang Chunxi, et al. Experiment study on magnet sensitivity of fiber optic gyro[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(10): 1116-1120 [21] 张维叙. 光纤陀螺及其应用[M]. 北京: 国防工业出版社, 2008Zhang Weixu. Fiber optic gyro and its application[M]. Beijing: National Defense Industry Press, 2008