留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铅铋堆系统分析程序开发初步研究

罗勇 潘麒文 杨尚东 辜峙钘

罗勇, 潘麒文, 杨尚东, 等. 铅铋堆系统分析程序开发初步研究[J]. 强激光与粒子束, 2023, 35: 076003. doi: 10.11884/HPLPB202335.220369
引用本文: 罗勇, 潘麒文, 杨尚东, 等. 铅铋堆系统分析程序开发初步研究[J]. 强激光与粒子束, 2023, 35: 076003. doi: 10.11884/HPLPB202335.220369
Luo Yong, Pan Qiwen, Yang Shangdong, et al. Preliminary study of lead-bismuth reactor system analysis code development[J]. High Power Laser and Particle Beams, 2023, 35: 076003. doi: 10.11884/HPLPB202335.220369
Citation: Luo Yong, Pan Qiwen, Yang Shangdong, et al. Preliminary study of lead-bismuth reactor system analysis code development[J]. High Power Laser and Particle Beams, 2023, 35: 076003. doi: 10.11884/HPLPB202335.220369

铅铋堆系统分析程序开发初步研究

doi: 10.11884/HPLPB202335.220369
基金项目: 四川省自然科学基金项目(2022NSFSC0253);国家自然科学基金项目(12005025)
详细信息
    作者简介:

    罗 勇,2792479574@qq.com

    通讯作者:

    辜峙钘,guzhixing17@163.com

  • 中图分类号: TL364.4

Preliminary study of lead-bismuth reactor system analysis code development

  • 摘要: 为解决多维计算程序对铅铋堆主回路进行长时间模拟时所需计算资源庞大的问题,基于自主开发的一维CFD程序,将零维点堆动力学模型及二维燃料棒传热模型集成到其中,并进行多物理场耦合,开发了一款适用于池式铅铋堆的系统分析程序。使用OECD/NEA发布的加速器驱动次临界系统(ADS)失束事故国际基准例题,对所开发程序进行稳态以及瞬态验证,以确保模型准确性。验证结果表明,所开发程序在关键参数上与发布结果吻合较好,且所需计算资源明显小于多维程序,证明了该程序可以对池式铅铋堆进行初步的热工水力及安全分析。
  • 图  1  交错网格

    Figure  1.  Staggered grid

    图  2  算法流程

    Figure  2.  Algorithm process

    图  3  管壳式换热器

    Figure  3.  Shell and tube heat exchanger

    图  4  程序主要模块耦合

    Figure  4.  Main coupling module of the code

    图  5  XADS堆芯结构及计算模型

    Figure  5.  XADS core structure and calculation model

    图  6  堆芯稳态轴向温度分布

    Figure  6.  Steady-state axial temperature distribution of core

    图  7  燃料棒剖面稳态温度分布

    Figure  7.  Steady-state temperature distribution of fuel profile

    图  8  归一化功率

    Figure  8.  Normalized power

    图  9  平均通道燃料中平面温度及活性区冷却剂出口温度

    Figure  9.  Average pin fuel temperature at fuel zone midplane and outlet coolant temperature

    图  10  热通道燃料中心中平面温度及活性区冷却剂出口温度

    Figure  10.  Hottest pin fuel centerline temperature at fuel zone midplane and outlet coolant temperature

    表  1  流量及功率分配

    Table  1.   Flow and power distribution

    No.number of fuelsnormalized powertraffic share
    183161.00000.7469
    219441.43750.1746
    35400.10000.0785
    下载: 导出CSV

    表  2  平均通道燃料中心及堆芯活性区冷却剂出口下降温度

    Table  2.   Average pin fuel center and outlet coolant drop temperature

    time/sfuel centerline/Kfuel centerline
    error/%
    outlet coolant /Koutlet coolant
    error/%
    this codeOECD/NEAthis codeOECD/NEA
    168702.913.2131.5
    31811800.536352.8
    62863004.661601.6
    123733700.886851.2
    下载: 导出CSV

    表  3  热通道燃料中心及堆芯活性区冷却剂出口下降温度

    Table  3.   Hottest pin fuel center and outlet coolant drop temperature

    time/sfuel centerline/Kfuel centerline
    error/%
    outlet coolant /Koutlet coolant
    error/%
    this codeOECD/NEAthis codeOECD/NEA
    197934.319205.0
    64204082.986805.0
    下载: 导出CSV
  • [1] Chen Hongli, Chen Zhao, Chen Chong, et al. Conceptual design of a small modular natural circulation lead cooled fast reactor SNCLFR-100[J]. International Journal of Hydrogen Energy, 2016, 41(17): 7158-7168. doi: 10.1016/j.ijhydene.2016.01.101
    [2] Pialla D, Tenchine D, Li S, et al. Overview of the system alone and system/CFD coupled calculations of the PHENIX Natural Circulation Test within the THINS project[J]. Nuclear Engineering and Design, 2015, 290: 78-86. doi: 10.1016/j.nucengdes.2014.12.006
    [3] Gu Zhixing, Zhang Qingxian, Gu Yi, et al. Verification of a self-developed CFD-based multi-physics coupled code MPC-LBE for LBE-cooled reactor[J]. Nuclear Science and Techniques, 2021, 32: 52. doi: 10.1007/s41365-021-00887-x
    [4] Zhang Taiyang, Smith E R, Brooks C S, et al. Validation of SAS4A/SASSYS-1 for predicting steady-state single-phase natural circulation[J]. Nuclear Engineering and Design, 2021, 377: 111149. doi: 10.1016/j.nucengdes.2021.111149
    [5] Mikityuk K, Pelloni S, Coddington P, et al. FAST: an advanced code system for fast reactor transient analysis[J]. Annals of Nuclear Energy, 2005, 32(15): 1613-1631. doi: 10.1016/j.anucene.2005.06.002
    [6] Emonot P, Souyri A, Gandrille J L, et al. CATHARE-3: A new system code for thermal-hydraulics in the context of the NEPTUNE project[J]. Nuclear Engineering and Design, 2011, 241(11): 4476-4481.
    [7] Novendstern E H. Turbulent flow pressure drop model for fuel rod assemblies utilizing a helical wire-wrap spacer system[J]. Nuclear Engineering and Design, 1972, 22(1): 28-42. doi: 10.1016/0029-5493(72)90059-3
    [8] Engel F C, Markley R A, Bishop A A. Laminar, transition, and turbulent parallel flow pressure drop across wire-wrap-spaced rod bundles[J]. Nuclear Science and Engineering, 1979, 69(2): 290-296. doi: 10.13182/NSE79-A20618
    [9] D’Angelo A, Gabrielli F. Benchmark on beam interruptions in an accelerator-driven system, final report on phase II calculations[R]. Paris: OECD Publications, 2004: 1-77.
    [10] 田瑞峰, 刘平安. 传热与流体流动的数值计算[M]. 哈尔滨: 哈尔滨工程大学出版社, 2015: 86-260

    Tian Ruifeng, Liu Pingan. Numerical heat transfer and fluid flow[M]. Harbin: Harbin Engineering University Press, 2015: 86-260
    [11] 王桂梅. 自然循环铅合金冷却反应堆主换热器的热工水力优化分析研究[D]. 合肥: 中国科学技术大学, 2014: 19-28

    Wang Guimei. Thermal-hydraulic optimal design and study of primary heat exchanger for lead alloy cooled natural circulation reactor[D]. Hefei: University of Science and Technology of China, 2014: 19-28
    [12] 陈昌友. 一个求解点堆中子动力学方程组的数值积分方法[J]. 核科学与工程, 2005, 25(1):20-23,29

    Chen Changyou. A numerical method of solving the point reactor neutron kinetics equations[J]. Chinese Journal of Nuclear Science and Engineering, 2005, 25(1): 20-23,29
    [13] D’Angelo A, Gabrielli F. Benchmark on beam interruptions in an accelerator-driven system, final report on phase I calculations[R]. Paris: OECD Publications, 2003: 1-28.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  555
  • HTML全文浏览量:  153
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-02
  • 修回日期:  2023-04-11
  • 录用日期:  2023-03-21
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回