Design of a high voltage isolated bipolar sampling circuit with high robustness
-
摘要: 根据大容量能库型装置双极性充电电源对采样电路的高鲁棒性、正负极性均可控等要求,研制了一种隔离电压大于30 kV、隔离转换电压误差小于0.1%的正负双极性直流高压隔离采样电路。采用电压/频率、频率/电压转换方法,通过光纤、变压器隔离等措施,实现了正负双极性直流高压同时隔离采样,解决了目前双极性直流高压电源存在的正负极性电压不平衡、控制信号与高功率系统地隔离不完全问题,提高了电源的抗电磁干扰能力。该电路在±10 kV双极性充电输出时,正负极性电压偏差小于0.1%,100多台充电电源在18.3 MJ脉冲装置放电产生的复杂电磁干扰环境下可靠稳定运行。Abstract: According to the requirements of high robustness and positive and negative polarity controllability of the sampling circuit for bipolar charging power supply designed for a large capacity energy storage device, a positive and negative bipolar DC high-voltage isolation sampling circuit with isolation voltage ≥ 30 kV and conversion voltage fractional error ≤ 0.1% has been developed. The voltage/frequency and frequency/voltage conversion methods were adopted, integrated with optical fibers, transformer isolation and other measures, the positive and negative bipolar DC high voltage were isolated and sampled independently at the same time. The problems of the bipolar DC high voltage power supply, such as the voltage imbalance of positive and negative polarity, the incomplete isolation of ground wires between the control signal system and the high power system, and so on were solved. The EMI resistance of the power supply was improved. As the bipolar charging voltage output achieved ± 10 kV, the deviation of positive and negative polarity voltage is less than 0.1%. More than 100 chargers operated reliably and stably under the complex electromagnetic interference environment generated by discharge of the 18.3 MJ pulsed device.
-
表 1 正负极性电压测试结果
Table 1. Positive and negative polarity voltage test results
unit: V positive polarity input voltage positive polarity output voltage negative polarity input voltage negative polarity output voltage 0.500 0.496 −0.500 0.494 1.000 0.996 −1.000 0.994 1.500 1.496 −1.500 1.494 2.000 1.997 −2.000 1.994 2.500 2.496 −2.500 2.495 3.000 2.997 −3.000 2.995 3.500 3.497 −3.500 3.495 4.000 3.997 −4.000 3.995 4.500 4.498 −4.500 4.496 5.000 4.998 −5.000 4.996 5.500 5.497 −5.500 5.496 6.000 5.997 −6.000 5.996 表 2 充电过程中的电压测试结果
Table 2. Voltage test results during charging process
unit: kV positive voltage negative voltage absolute deviation 1.01 −1.06 0.05 2.05 −2.10 0.05 3.03 −3.09 0.06 3.96 −4.02 0.06 5.09 −5.01 0.08 6.08 −6.00 0.08 7.08 −6.99 0.09 8.07 −7.99 0.08 9.09 −9.01 0.08 10.05 −9.96 0.09 -
[1] 樊波, 倪磊, 牛天林, 等. 基于SVPWM的军用储能电源双闭环模糊控制[J]. 火力与指挥控制, 2017, 42(2):168-171,175 doi: 10.3969/j.issn.1002-0640.2017.02.036Fan Bo, Ni Lei, Niu Tianlin, et al. Research on control strategy for military energy storage system rectifier based on SVPWM double-close-loop fuzzy control[J]. Fire Control & Command Control, 2017, 42(2): 168-171,175 doi: 10.3969/j.issn.1002-0640.2017.02.036 [2] 刘福才, 金书辉, 赵晓娟. 串并联谐振高压脉冲电容充电电源的闭环控制[J]. 电力电子技术, 2012, 46(6):69-72 doi: 10.3969/j.issn.1000-100X.2012.06.025Liu Fucai, Jin Shuhui, Zhao Xiaojuan. Closed-loop control of high voltage pulse capacitor charging power supply based on series-parallel resonant[J]. Power Electronics, 2012, 46(6): 69-72 doi: 10.3969/j.issn.1000-100X.2012.06.025 [3] 刘坤, 付荣耀, 高迎慧, 等. 高压重频充电电源控制系统的设计[J]. 强激光与粒子束, 2016, 28:045001 doi: 10.11884/HPLPB201628.125001Liu Kun, Fu Rongyao, Gao Yinghui, et al. Design of control system of high voltage repetition frequency charging power supply[J]. High Power Laser and Particle Beams, 2016, 28: 045001 doi: 10.11884/HPLPB201628.125001 [4] 樊生文, 蔡斌峰, 王泽庭. 基于串联谐振的电子束焊机灯丝电源的研究[J]. 电源技术, 2016, 40(5):1113-1115,1121 doi: 10.3969/j.issn.1002-087X.2016.05.052Fan Shengwen, Cai Binfeng, Wang Zeting. Research on series resonant electron beam welding filament power supply[J]. Chinese Journal of Power Sources, 2016, 40(5): 1113-1115,1121 doi: 10.3969/j.issn.1002-087X.2016.05.052 [5] 黄新波, 刘斌, 张周熊, 等. 调频式串联谐振试验电源数字控制器设计[J]. 电力自动化设备, 2016, 36(7):138-142,155 doi: 10.16081/j.issn.1006-6047.2016.07.021Huang Xinbo, Liu Bin, Zhang Zhouxiong, et al. Design of digital controller for frequency-tuned series resonance power source[J]. Electric Power Automation Equipment, 2016, 36(7): 138-142,155 doi: 10.16081/j.issn.1006-6047.2016.07.021 [6] 廖永福, 林磊, 李傲, 等. 移相串联谐振高压电容器充电电源谐振参数设计方法及其电流控制策略[J]. 电工技术学报, 2016, 31(16):83-92 doi: 10.3969/j.issn.1000-6753.2016.16.011Liao Yongfu, Lin Lei, Li Ao, et al. Resonant parameters design method and current control strategy of phase-shifted series resonant high-voltage capacitor charging power supply[J]. Transactions of China Electrotechnical Society, 2016, 31(16): 83-92 doi: 10.3969/j.issn.1000-6753.2016.16.011 [7] 夏军. 一种实用的高压开关电源采样隔离反馈电路[J]. 高压电器, 2006, 42(4):295-297 doi: 10.3969/j.issn.1001-1609.2006.04.019Xia Jun. A practical feedback circuit of output isolated sampling for high voltage switch supply[J]. High Voltage Apparatus, 2006, 42(4): 295-297 doi: 10.3969/j.issn.1001-1609.2006.04.019 [8] 石一, 杨小卫, 高迎慧, 等. 光纤隔离变换器在高压充电电源中的应用[J]. 高电压技术, 2008, 34(7):1422-1426 doi: 10.13336/j.1003-6520.hve.2008.07.023Shi Yi, Yang Xiaowei, Gao Yinghui, et al. Application of isolation converter of optical fiber in the high voltage charging power supply[J]. High Voltage Engineering, 2008, 34(7): 1422-1426 doi: 10.13336/j.1003-6520.hve.2008.07.023 [9] 何光林, 黄科伟. 引信电子安全系统高压反馈电路研究[J]. 北京理工大学学报, 2009, 29(1):47-49 doi: 10.15918/j.tbit1001-0645.2009.01.015He Guanglin, Huang Kewei. High voltage feedback circuit in the electronic safety and arming of fuzes[J]. Transactions of Beijing Institute of Technology, 2009, 29(1): 47-49 doi: 10.15918/j.tbit1001-0645.2009.01.015 [10] 张小龙. 串联谐振软开关电容器充电电源研究[D]. 武汉: 华中科技大学, 2009Zhang Xiaolong. Research on series resonant soft-switching capacitor charging power supply[D]. Wuhan: Huazhong University of Science and Technology, 2009. [11] 马建荣, 窦金生, 陈峰, 等. 静电除尘用高频电源直流电压检测电路[J]. 兵工自动化, 2013, 32(3):63-65,69 doi: 10.7690/bgzdh.2013.03.018Ma Jianrong, Dou Jinsheng, Chen Feng, et al. DC voltage detection circuit based on high frequency power in electrostatic precipitation[J]. Ordnance Industry Automation, 2013, 32(3): 63-65,69 doi: 10.7690/bgzdh.2013.03.018 [12] 李波, 赵娟, 李洪涛, 等. 一种新型等离子体磁控溅射镀膜电源设计[J]. 强激光与粒子束, 2019, 31:040020 doi: 10.11884/HPLPB201931.190002Li Bo, Zhao Juan, Li Hongtao, et al. Design of new power source for plasma magnetron sputtering coating[J]. High Power Laser and Particle Beams, 2019, 31: 040020 doi: 10.11884/HPLPB201931.190002 [13] 李波, 李博婷, 叶超, 等. 双极性脉冲磁控溅射电源设计[J]. 强激光与粒子束, 2018, 30:045004 doi: 10.11884/HPLPB201830.170393Li Bo, Li Boting, Ye Chao, et al. Design of bipolar pulsed magnetron sputtering power supply[J]. High Power Laser and Particle Beams, 2018, 30: 045004 doi: 10.11884/HPLPB201830.170393 [14] 李波, 赵娟, 李洪涛, 等. 正负双极性直流高压充电电源设计[J]. 强激光与粒子束, 2022, 34:095016 doi: 正负双极性直流高压充电电源设计Li Bo, Zhao Juan, Li Hongtao, et al. Design of bipolarity DC high voltage charging power supply[J]. High Power Laser and Particle Beams, 2022, 34: 095016 doi: 正负双极性直流高压充电电源设计