留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子诱发波导微放电实验研究

任三孩 古松 谭谦 叶新 方进勇

任三孩, 古松, 谭谦, 等. 电子诱发波导微放电实验研究[J]. 强激光与粒子束, 2023, 35: 034005. doi: 10.11884/HPLPB202335.220387
引用本文: 任三孩, 古松, 谭谦, 等. 电子诱发波导微放电实验研究[J]. 强激光与粒子束, 2023, 35: 034005. doi: 10.11884/HPLPB202335.220387
Ren Sanhai, Gu Song, Tan Qian, et al. Experimential study of multipactor induced by electrons waveguide[J]. High Power Laser and Particle Beams, 2023, 35: 034005. doi: 10.11884/HPLPB202335.220387
Citation: Ren Sanhai, Gu Song, Tan Qian, et al. Experimential study of multipactor induced by electrons waveguide[J]. High Power Laser and Particle Beams, 2023, 35: 034005. doi: 10.11884/HPLPB202335.220387

电子诱发波导微放电实验研究

doi: 10.11884/HPLPB202335.220387
详细信息
    作者简介:

    任三孩,sanhairen@163.com

    古 松,gusongcast@163.com

  • 中图分类号: O571.33

Experimential study of multipactor induced by electrons waveguide

  • 摘要: 针对宇航微波器件功率密度越来越大,空间电子可能诱发微波器件发生微放电的潜在威胁,通过设计特殊波导结构,利用电子枪提供的种子电子入射到特殊波导内,在波导内通入大功率微波信号,利用检波器和示波器分别检测透射波形和反射波形,观察微放电现象的持续过程;改变电子入射能量,观测到不同程度的微放电现象,该电子枪提供种子电子诱发波导微放电效应的实验方法为微波器件微放电效应研究提供了重要手段。
  • 图  1  微放电间隙电压与fd的关系曲线[14],其中射频频率为f(GHz),间隙宽度为d(mm)

    Figure  1.  Dependence of the gap voltage on the product of the frequency and gap separation (fd). Here, f is the frequency in GHz and d is the gap separation in mm

    图  2  实验布局简图

    Figure  2.  Schematic of experimental layout

    图  3  X波段特殊波导

    Figure  3.  Structural model of the X-band waveguide transformer

    图  4  微放电实验布局图

    Figure  4.  Picture of experimental layout

    图  5  透射波形对比图

    Figure  5.  Comparison of the transmission waveform and incident waveform without the electron emission

    图  6  透射波形对比图

    Figure  6.  Comparison of the transmission and incident waveform with the electron emission

    图  7  反射波形放电前后对比图

    Figure  7.  Comparison of the reflected waveform without or with the electron emission

    表  1  大功率微波源性能参数

    Table  1.   Parameters of high power microwave source

    operating frequency/GHzfrequency bandwidth/MHzpeak output power /kWmicrowave pulse output width/μsduty cycle/%
    9.71001010.1
    下载: 导出CSV
  • [1] Kishek R A, Lau Y Y, Ang L K, et al. Multipactor discharge on metals and dielectrics: historical review and recent theories[J]. Physics of Plasmas, 1998, 5(5): 2120-2126. doi: 10.1063/1.872883
    [2] Shen Fazhong, Wang Xinbo, Cui Wanzhao, et al. Nonstationary statistical theory for single-surface dielectric multipactors[J]. IEEE Transactions on Plasma Science, 2020, 48(2): 433-437. doi: 10.1109/TPS.2020.2966776
    [3] 李韵, 封国宝, 谢贵柏, 等. 大功率铁磁性微波部件微放电演变机理与抑制[J]. 强激光与粒子束, 2022, 34:063002

    Li Yun, Feng Guobao, Xie Guibai, et al. Multipactor evolution and suppression in high-power ferromagnetic components[J]. High Power Laser and Particle Beams, 2022, 34: 063002
    [4] Vaughan J R M. Multipactor[J]. IEEE Transactions on Electron Devices, 1988, 35(7): 1172-1180. doi: 10.1109/16.3387
    [5] Shemelin V D. Multipactor discharge in a rectangular waveguide with regard to normal and tangential velocity components of secondary electrons[R]. SRF010322-03, 2001.
    [6] Greenblatt M H. A microwave secondary electron multiplier[J]. Review of Scientific Instruments, 1949, 20(9): 646-650. doi: 10.1063/1.1741641
    [7] Geng Rongli, Padamsee H, Shemelin V D. Multipacting in a rectangular waveguide[C]//Proceedings of 2001 Particle Accelerator Conference. 2001: 1228-1230.
    [8] Anderson D, Jordon U, Lisak M, et al. Microwave breakdown in resonators and filters[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(12): 2547-2556. doi: 10.1109/22.809005
    [9] Gonzalez-Iglesias D, Perez A M, Anza S, et al. Multipactor in a coaxial line under the presence of an axial DC magnetic field[J]. IEEE Electron Device Letters, 2012, 33(5): 727-729. doi: 10.1109/LED.2012.2186952
    [10] Rozario N, Lenzing H F, Reardon K F, et al. Investigation of Telstar 4 spacecraft Ku-band and C-band antenna components for multipactor breakdown[J]. IEEE Transactions on Microwave Theory and Techniques, 1994, 42(4): 558-564. doi: 10.1109/22.285060
    [11] 刘敏, 王晓天, 鲁帆, 等. 典型星载螺旋天线的大功率微放电效应仿真分析及试验研究[J]. 航天器环境工程, 2022, 39(1):55-60

    Liu Ming, Wang Xiaotian, Lu Fan, et al. The high power multipactor on typical satellite-borne helix antenna[J]. Spacecraft Environment Engineering, 2022, 39(1): 55-60
    [12] Woode A, Petit J. Investigations into multipactor breakdown in satellite microwave payloads[J]. ESA Journal, 1990, 14(4): 467-478.
    [13] Semenov V E, Zharova N, Udiljak R, et al. Multipactor in a coaxial transmission line. II. Particle-in-cell simulations[J]. Physics of Plasmas, 2007, 14: 033509. doi: 10.1063/1.2710466
    [14] ESA-ESTEC. Space engineering: multipacting design and test[R]. Noordwijk: ESA Publication Division, 2003.
    [15] 翟永贵, 李记肖, 王洪广, 等. 微波器件微放电阈值功率自适应扫描方法[J]. 强激光与粒子束, 2018, 30:073006 doi: 10.11884/HPLPB201830.170530

    Zhai Yonggui, Li Jixiao, Wang Hongguang, et al. Adaptive scanning method for multipactor threshold prediction in microwave devices[J]. High Power Laser and Particle Beams, 2018, 30: 073006 doi: 10.11884/HPLPB201830.170530
    [16] Cui Wanzhao, Li Yun, Yang Jing, et al. An efficient multipaction suppression method in microwave components for space application[J]. Chinese Physics B, 2016, 25: 068401. doi: 10.1088/1674-1056/25/6/068401
    [17] 李韵, 崔万照, 张洪太, 等. 星载大功率复杂微波部件微放电效应数值模拟[J]. 中国空间科学技术, 2017, 37(2):73-80

    Li Yun, Cui Wanzhao, Zhang Hongtai, et al. A novel simulation method of multipactor in complex component for satellite application[J]. Chinese Space Science and Technology, 2017, 37(2): 73-80
    [18] Geng R L, Goudket P, Carter R G, et al. Dynamical aspects of multipacting induced discharge in a rectangular waveguide[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 538(1/3): 189-205.
    [19] 王新波, 崔万照, 魏焕, 等. 微放电试验中种子电子加载方法比较[J]. 强激光与粒子束, 2018, 30:063010 doi: 10.11884/HPLPB201830.170310

    Wang Xinbo, Cui Wanzhao, Wei Huan, et al. Comparative study of electron seeding in multipactor test[J]. High Power Laser and Particle Beams, 2018, 30: 063010 doi: 10.11884/HPLPB201830.170310
    [20] Anza S, Vicente C, Gil J, et al. Experimental verification of multipactor prediction methods in multicarrier systems[C]//Proceedings of the 46th European Microwave Conference. 2016: 226-229.
    [21] Puech J, Lapierre L, Sombrin J, et al. A multipactor threshold in waveguides: theory and experiment[C]//Proceedings of NATO Advanced Research Workshop on Quasi-Optical Control of Intense Microwave Transmission. 2005: 305-323.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  481
  • HTML全文浏览量:  216
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-23
  • 修回日期:  2023-02-03
  • 录用日期:  2023-02-03
  • 网络出版日期:  2023-02-09
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回