Analysis of different burnup calculation models on nuclide components of spent fuel assembly in commercial pressurized water reactor
-
摘要: 燃耗计算精度对提高乏燃料贮存效率有着重要影响,在应用燃耗信用制时,燃耗计算得到的核素成分偏差决定了乏燃料贮存的临界安全裕量。不同燃耗计算模型所得到的核素成分偏差各不相同,为提高燃耗计算精度,提出了一种装载不同燃料富集度的多组件燃耗计算模型,并使用不同燃耗计算模型分别对TMI-1反应堆NJ07OG组件中的6个样本进行了计算、对比和分析。结果表明,相比其他模型,考虑不同燃料富集度的多组件模型得到的235U、238U和239Pu等核素平均相对偏差更接近于零且6个样本的相对偏差分布更为平均。Abstract: Burnup credit has an important impact on improving the efficiency of spent fuel storage. In the burnup credit, the burnup calculation model can affect the nuclide composition deviation, and the more accurate the nuclide composition, the lower the critical safety margin for spent fuel storage. To improve the accuracy of the burnup calculation, a multi-assembly burnup calculation model loaded with different fuel enrichment is proposed in this paper. Six samples of TMI-1 reactor NJ07OG assemblies were calculated, compared and analyzed by using different burnup calculation models. The results show that the average relative deviations of 235U, 238U and 239Pu obtained from the multi-assembly burnup model with different fuel enrichment are closer to zero and the relative deviations are more evenly distributed among the six samples than that of other models.
-
Key words:
- burnup calculation model /
- SFCOMPO-2.0 /
- nuclide deviation /
- burnup credit
-
表 1 燃料组件几何参数表
Table 1. Fuel assembly geometric parameters
(mm) fuel pellet inner
diameterclad inner
diameterclad outer
diametercell pitch absorber rod
pellet diameterabsorber rod cladding
inner diameter9.40 9.58 10.92 14.43 8.64 9.14 absorber rod cladding
outer diameterguide tube
inner diameterguide tube
outer diameterinstrument tube
inner diameterinstrument tube
outer diameterassembly
pitch10.92 12.65 13.46 11.2 12.52 218.11 表 2 选取的核素列表
Table 2. Nuclides chosen
actinide nuclides fission products 234U, 235U, 236U, 238U 151Eu, 153Eu, 143Nd, 145Nd, 148Nd 238Pu, 239Pu, 240Pu, 241Pu, 242Pu 147Sm, 149Sm, 150Sm, 151Sm, 152Sm 237Np, 241Am, 243Am, 244Cm 155Gd -
[1] 肖雨生. 中国核电发展与乏燃料贮存及后处理的关系[J]. 电工技术, 2020(18):24-25,57 doi: 10.19768/j.cnki.dgjs.2020.18.010Xiao Yusheng. Relationship between China’s nuclear power development and spent fuel storage and reprocessing[J]. Electric Engineering, 2020(18): 24-25,57 doi: 10.19768/j.cnki.dgjs.2020.18.010 [2] 徐健, 王伟, 黄庆勇, 等. 国外核电厂乏燃料贮存方式对比研究[J]. 中国核电, 2021, 14(6):901-909Xu Jian, Wang Wei, Huang Qingyong, et al. Comparison study on spent fuel storage of nuclear power plant[J]. China Nuclear Power, 2021, 14(6): 901-909 [3] 杨海峰, 霍小东, 易璇, 等. 高密度乏燃料贮存格架临界安全设计[J]. 核动力工程, 2014, 35(s2):167-169 doi: 10.13832/j.jnpe.2014.S2.0167Yang Haifeng, Huo Xiaodong, Yi Xuan, et al. Criticality safety design for high density spent fuel storage rack[J]. Nuclear Power Engineering, 2014, 35(s2): 167-169 doi: 10.13832/j.jnpe.2014.S2.0167 [4] 倪梓宁, 于涛, 谢金森, 等. 燃耗信任制下燃耗计算对临界计算的偏差及不确定度的研究[J]. 原子能科学技术, 2022, 56(9):1915-1923Ni Zining, Yu Tao, Xie Jinsen, et al. Research on critical calculation bias and uncertainty from burnup calculation based on burnup credit[J]. Atomic Energy Science and Technology, 2022, 56(9): 1915-1923 [5] Radulescu G, Gauld I C, Ilas G, et al. Approach for validating actinide and fission product compositions for burnup credit criticality safety analyses[J]. Nuclear Technology, 2014, 188(2): 154-171. doi: 10.13182/NT13-154 [6] Michel-Sendis F, Gauld I C, Martinez J S, et al. SFCOMPO-2.0: an OECD NEA database of spent nuclear fuel isotopic assays, reactor design specifications, and operating data[J]. Annals of Nuclear Energy, 2017, 110: 779-788. doi: 10.1016/j.anucene.2017.07.022 [7] Gauld I C, Giaquinto J M, Delashmitt J S, et al. Re-evaluation of spent nuclear fuel assay data for the Three Mile Island unit 1 reactor and application to code validation[J]. Annals of Nuclear Energy, 2016, 87: 267-281. doi: 10.1016/j.anucene.2015.08.026 [8] Hermann O W, Bowman S M, Parks C V, et al. Validation of the SCALE system for PWR spent fuel isotopic composition analyses[R]. ORNL/TM-12667, 1995. [9] 汪天雄, 张滕飞, 吴海成, 等. 基于组件计算的燃耗实验基准题建模分析[J]. 核技术, 2020, 43:060003 doi: 10.11889/j.0253-3219.2020.hjs.43.060003Wang Tianxiong, Zhang Tengfei, Wu Haicheng, et al. Modeling and analysis of depletion experiment benchmark based on assembly calculation[J]. Nuclear Techniques, 2020, 43: 060003 doi: 10.11889/j.0253-3219.2020.hjs.43.060003 [10] 肖越, 吴海成, 吴小飞, 等. 燃耗数据库基准检验方法研究[J]. 原子能科学技术, 2022, 56(5):952-960Xiao Yue, Wu Haicheng, Wu Xiaofei, et al. Research on benchmarking method of burnup database[J]. Atomic Energy Science and Technology, 2022, 56(5): 952-960 [11] 杨森涵, 李云召, 邵睿智, 等. 基于NECP-Bamboo程序的商用压水堆乏燃料组件核素成分分析[J/OL]. 原子能科学技术: 1-10[2023-01-12]. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=YZJS20221108000.Yang Senhan, Li Yunzhao, Shao Ruizhi, et al. Nuclide composition evaluation for commercial PWR nuclear spent fuel assembly based on NECP-Bamboo[J/OL]. Atomic Energy Science and Technology: 1-10[2023-01-12]. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=YZJS20221108000. [12] Ade B J. SCALE/TRITON Primer: a primer for light water reactor lattice physics calculations[R]. NUREG/CR-7041, ORNL/TM-2011/21, 2012. [13] Greene N M. BONAMI: resonance self-shielding by the Bondarenko method[R]. ORNL/TM-2005/39, 2011. [14] Westfall R M, Petrie L M, Greene N M, et al. NITAWL: SCALE system module for performing resonance shielding and working library production[R]. ORNL/TM-2005/39, 2011. [15] Scaglione J M. Three Mile Island unit 1 radiochemical assay comparisons to SAS2H calculations[R]. CAL-UDC-NU-000011, 2002. [16] Gauld I C. ORIGEN-S: depletion module to calculate neutron activation, actinide transmutation, fission product generation, and radiation source terms[R]. ORNL/TM-2005/39, 2011. [17] Wimmer L B. Summary report of commercial reactor criticality data for Three Mile Island unit 1[R]. TDR-UDC-NU-000004, 2001. [18] 夏兆东, 周小平, 李晓波, 等. 田湾核电站乏燃料水池采用燃耗信任制的计算研究[J]. 原子能科学技术, 2013, 47(11):2098-2102 doi: 10.7538/yzk.2013.47.11.2098Xia Zhaodong, Zhou Xiaoping, Li Xiaobo, et al. Calculation study of TNPS spent fuel pool using burnup credit[J]. Atomic Energy Science and Technology, 2013, 47(11): 2098-2102 doi: 10.7538/yzk.2013.47.11.2098 [19] ASTM E321-2, Standard test method for atom percent fission in uranium and plutonium fuel (neodymium-148 method)[S].